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Executive Summary 

This document reports on the research activities of the UW/NW VLSI Consortium for the pe- 
riod 18 March 1986 to 10 December 1986 under sponsorship of the Defense Advanced Research 
Projects Agency. The applicable contract for this period is MDA 903-85-K-0072. On January 
1, 1986 the UW/NW VLSI Consortium will change its name to the Northwest Laboratory for 
Integrated Systems. 

One of the outstanding contributions during this reporting period has been our work in the 
energy complexity analysis of VLSI designs. An extensive theoretical analysis has been made 
of the energy requirements of several classes of functions, in particular transitive and one- 
switchable. A surprising result of this work is that, for systolic implementations of some of 
these functions, the average case energy consumption is of the same order as worst case. For 
this reason the energy optimization of many datapath systolic systems gives negligible returns. 
Another work in this area analyzes the speed and energy tradeoffs of dynamic and static PLA 
designs within various application domains. 

■« 

A major project of this reporting period has been the definition of a model for generator 
construction, the intent of the model is to provide a concise representation that captures the 
fundamental structural and functional properties of the circuit. With this representation a 
variety of output descriptions may be derived, -v 

During the past six months the model has been refined and a language parser written. Work is 
currently underway on the backend programs that analyze the model and produce schematics, 
layouts, and functional descriptions.        ^ 

The importance of generating high quality circuits which are free of noise and metal migration 
problems has prompted us to investigate means of analyzing the current carrying capacities of 
power bus structures in MOS designs. We have begun work on a tool called Hercules that will 
perform such an analysis and inform the designer of excessive current densities and voltage 
drops. 

Progress continues on the Network C (NC) simulation system. Major revisions have been 
made in both the MOS models and numerical procedures since the system was described in 
the last semiannual report. The system is now adding significant simulation capability to the 
Consortium toolset; our intent is to include it in a forthcoming release of our software. 

The Consortium continues to distribute a CMOS/nMOS design system formed of tools devel- 
oped at the UW as well as UC Berkeley, CMU, and MIT. This distribution berafits the VLSI 
community; it also provides the Consortium with useful feedback on the effectiveness of the 
tools. 
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2    Progress on Design Generators 

(W. Winder, R. Nottrott, M. Liem, J. Baer, L. Snyder, L. McMurchie) 

Based on a model for design generator construction (see Appendix A, 'Declara^ve Descriptions 
..."), a compiler has been implemented which analyzes the declarative descr «ion of a genera- 
tor instance. The compiler and its supporting software have been implemented in a modular 
fashion to accommodate layout, schematic, mixed-mode and functional outputs. In the follow- 
ing discussion the programs analyzing the declarative description! and producing outputs are 
called backend programs. The programs which interact with the user of a generator to produce 
the declarative description of an instance are called frontend programs. 

Currently there exist backend programs for both mixed-mode and schematic outputs. Both 
are based on leaf cells containing PostScript1 commands The output files contain these leaf 
cells plus placement commands that orient the leaf cells according to the structure specified 
in the declarative description. When sent to a device capable to interpreting PostScript code, 
a diagram of the schematic or mixed mode representation will be produced. Such devices 
currently include a laser printer and a graphics terminal. 

The process of translation of the generator model into an output by the backend program 
occurs in four steps: initialization and control, parsing, table building and semantic analysis. 
The backend software implemented so far includes approximately 7,500 lines of new source 
code plus 2,500 lines of code adapted from other tools. 

Parsing is implemented via a function that creates a parse tree of the instance of the grammar 
described by the notation. The parsing function is created from the grammar described in a 
grammar file. This file contains the description of all legal notation instances for all generator 
outputs (schematic, layout, mixed and functional), and as such, will be used by all backend 
processes. The grammar file is inputed to a YACC to YACC translator2, which adds YACC 
actions to the grammar that will cause the parse tree to be built. 

A lexical analyzer accompanies the parsing function The parsing function acts as described 
in the YACC manual, getting tokens from the lexical analyzer as needed, in an attempt to 
recognize grammar production rules. Details of operation are, as far as possiMe, left to the 
called function. 

When parsing is complete and all tables have been built, analysis begins. In the schematic 
and mixed mode backends, analysis consists of drawing each leaf cell in the correct place on 
a virtual page. This process requires the evaluation of symbols. If the symbol is a leaf cell, a 
PostScript function is called to draw it. If the symbol is a composite, the geometric expression 
describing the symbol is decomposed. In this decomposition, evaluation of a symbol may cause 
recursive calls. At the end of the process, the vi.tual page is mapped onto the physical page. 

The model for the decoder given in Appendix A has been im lerne;, od to the point that the 

'PostScript is a graphics page description language. PostScript is a trademark of Adobe Systems Incorporated. 
2YACC is a compiler generation program available on most UNIX systems. 
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decoder schematic and mixed mode diagrams can be generated. Similar work for the multiplier 
is in preparation. 

The frontend programs that interact with the user of a generator to create the generator model 
from the user specifications are located in the requirements definition phase. 

3    Energy Analysis of VLSI Circuits 

(L. Snyder, A. Tyagi) 

Due to engineering limitations on heat dissipation from a planar chip and a general trend 
towards energy conservation, energy efficiency of VLSI circuits has become an important issue 
in VLSI algorithm design. 

Power dissipation has long been recognized as a limitation on nMOS designs. Despite the 
lower energy requirements of CMOS designs relative to nMOS, energy dissipation is an issue 
in CMOS as well. In the first place circuit designers tend to overdrive CMOS devices to 
obtain higher speeds. Additionally, in CMOS the power consumption is a direct function of 
the system frequency. Thus to be energy-conscious, care needs to be taken in the design of 
high performance CMOS architectures. 

There are two phases to designing an energy efficient VLSI circuit. In the first phase one tries 
to understand the theoretical limits (complexity). This helps the designer set realistic goals 
for a design. For example, with energy complexity of at least n squared, an implementation 
linear in energy consumption would not be possible. In the second phase one tries to obtain a 
design as close as possible to the lower bound derived in the first phase. Of course none may 
exist that achieves that lower bound. 

The paper in Appendix B is an attempt in the first direction. The paper analyzes the energy 
complexity of a very useful class of functions identified as normal transitive functions. A 
function is normal transitive if it embeds a computation of a shifting function. Examples 
include multiplication, convolution, shifting, and three-matrix products. The paper shows 
that when designing systolic architectures for these functions, it does not pay to worry about 
energy optimization, since the worst case and average case energy consumptions are equal. 
The trend towards integrating most of the architectural components onto fewer and fewer 
chips has encouraged the design of datapath and control components with systolic algorithms 
due to their simple communication structure. Thus, our result is useful inasmuch as it frees 
the designer from considering energy optimization as one of the objectives of the architectural 
design of this class of functions. 

Another result of the paper reconfirms the intuitive belief that the designer can trade the 
speed of operation with the energy consumption. The paper establishes a lower bound on 
the worst-case switching energy for the class of functions called one-switchable. A function is 
one-switchable if there exist two input assignments differing in only one bit position, such that. 
going from one input assignment to another switches most of the output bits. Thus transitive 
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functions are a subset of one-switchable functions. The paper gives a quantitative tradeoff 
between speed and energy consumption for such functions. 

Once the inherent limits on the energy consumption of a function are understood, one strives 
to find the most energy-efficient VLSI circuit implementation for it. The paper in Appendix 
C analyzes the energy complexity of a very commonly used VLSI structure, the PLA (This is 
a preprint of a paper to be presented at the Stanford VLSI Conference in March, 1987). 

In this paper a comparison is made between the energy complexities of the static and dynamic 
design styles for a PLA. We show that the average energy consumption of a dynamic PLA 
exceeds that of a static PLA. We also show that, on average, a dynamic PLA is faster than a 
static PLA. In order to prove these results, we deal with a very general class of PL As. If we 
are allowed to restrict this class, we can do more. In particular, we show that the choice of an 
optimal design style for a data path control PLA depends on the degree of parallelism of the 
data path. A high degree of parallelism may in fact favor a static designed PLA. 

Our results give a mathematical justification (within the limitations of our model) for picH^ 
one design style over the other for a given application domain. 

4    Hercules: A Power Estimator for MOS VLSI Circuits 

(A. Tyagi) 

Hercules is a stage-based MOS power estimator. The present CMOS version reports the average 
and peak load current due to the charging and discharging of capacitance in the curcuit. 
Hercules also repoits the average and peak direct current due to both p and n channel devices 
being on during a slowly rising input signal. A tree-like data structure models the Vdd and 
ground distribution from the pins to sources/drains of devices. By combining the current 
requirements with the power distribution tree, checks can be performed to see if maximum 
current densities have been exceeded. Voltage drops from pins to sources and drains can also 
be reported. 

The salient features of Hercules are as follows: 

1. A linear average time algorithm employed for computing current levels is based on stage 
decomposition [Ous85] of a CMOS VLSI circuit. A stage is a chain of switches followed 
by either an output or a gate. The stages are traced out in a depth-first order enabling 
us to deal with the cross-coupled memory elements. The current implementation is an 
extension of a U.^v-g verification program, Crystal [Ous83]. Hence, it supports all the 
mechanisms of Crystal for flow specification. 

2. An accurate switch-level model of short-circuit current in CMOS inverters and static 
circuits is derived. In CMOS circuits, slow input signal edges give rise to short-circuit 
current from Vdd to ground. The duration and magnitude of this current depend on the 
input signal slope, load and the device gain. All these factors can be encapsulated into 



a single number, the rise time ratio, as observed by Ousterhout [Ous84] in a different 
context. The rise time ratio is the ratio of input signal slope to the native output signal 
speed. Most of the digital circuits are designed with only a fixed set of load and transistor 
sizes. The information about these structures can be extracted from SPICE runs on basic- 
types of devices occuring in the circuit. Thus this model can predict the short-circuit 
current levels to within 20% of SPICE calculations. Ousterhout [Ous84] was the first to 
use this fact to model the effective resistances of devices in Crystal. 

3. The metal tree idea of Wilson [Wil85] is extended to accomodate multilayer metal and 
loops. Typically, a VLSI circuit does not have many loops in its power distribution 
metal bus structure. We found that the comb structure, a very compact biconnected 
component, is the most common form of loop encountered in power buses. We are able 
to deal with them very efficiently using a depth-first search technique. 

[Ous83] J.K. Ousterhout. Crystal: A Timing Analyzer for nMOS VLSI Circuits. In Proceed- 
ings of 3rd Caltech Consference on VLSI, Computer Science Press, 1983. 

[Ous84] J.K. Ousterhout. Switch-Level Delay Models for Digital MOS VLSI. In Proceedings 
of 21st Design Automation Conference, ACM-IEEE, 1984. 

[Ous85] J.K. Ousterhout. A Switch-Level Timing Verifier for Digital MOS VLSI. IEEE Trans- 
actions on Computer Aided Design, July 1985. 

[Wil85] J.Wilson. Analysis of Power Requirements inside of nMOS Integrated Circuits. M.S. 
Thesis, Computer Science Dept., Oregon Graduate Center, Beaverton, 1985. 

5    The Pyramid Machine 

(S. Tanimoto, T. Ligocki, R. Ling) 

Rapid analysis of images is a requirement in several areas of machine vision, including industrial 
parts inspection, visual navigation systems for robots, and medical diagnosis from real-time 
imaging devices. While parallel computers exist which are effective in solving some problems 
(e.g. large numerical problems), their interconnection networks are not very suitable for image 
processing, since much time is spent routing data from one processor to another. Vision 
applications would usually be much better served by parallel computers with image-oriented 
interconnection networks. 

It is commonly suggested that in order to construct such an architecture, one may assign a 
processor to each cell (pixel) of the image and allow the processors to communicate directly with 
their immediate neighbors ii the array. While such a distribution of processors is an important 
improvement over one processor or a row of processors, it still does not provide much support 
for the computation of global (non-local) characteristics of an image. A hierarchical structure 
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has been proposed as having most of the advantages of the processor-per-cell arrangement, 
while also possessing a capability for global computations. 

We have proposed and built a hierarchical image-processing architecture that we call a pyramid 
machine3. This machine, being simultaneously parallel and serial, allows gradual formation of 
more and more global descriptions of image data m parallel. One advantage of this system is 
the multi-resolution data that is implicitly available. Another advantage is the short (logN) 
data paths from the pixels to the root of the pyramid. Yet another advantage is that such 
operations as median filtering can be efficiently performed. 

The prototype pyramid machine recently completed has four levels with 64 processing elements 
(PE's) at the base level. A custom VLSI circuit called the "HCL chip" provides a 4x4 array 
of PEs and is used as the basic building block. 

The HCL chip is intended to implement a piece of a pyramidal architecture in such a manner 
that it can be used in the building of a system of arbitrary size. In order to achieve this goal, 
the design required ad-quate functionality as well as processor density. It seemed clear that 
a full custom implementation was the only solution meeting these requirements. The HCL 
chip was designed in 4 micron nMOS using the Consortium design system and fabricated bv 
MOSIS. 

6    VLSI Tools Release 

Release 3.0 of the Consortium design system has now been distributed to 135 sites. A new 
release of software is currently being prepared. It will contain the '86 Berkeley tools (including 
Magic) as well as a number of tools developed at the UW. These tools will include a number 
of design generators developed under this project as well as Coordinate Free LAP, the layout 
language in which these generators have been written. Also included will be the functional 
simulation system NC described in section 8. 

The new release will be available for a tape charge to Universities, government contractors and 
industries affihateu with the Consortium. 

7    Educational Offerings 

For the fourth year in a row the Consortiam offered an intensive class in digital CMOS design. 
The course is intended to provide industry engineers with the fundamentals of design and 
instruction in the use of CAD software. We view the course as fundamental to technology 
transfer between industry and the University research efforts in VLSI design. 

3"A Prototype Pyramid Machine for Hierarchical Cellular Logic", by S. Tanimoto, T. Ligocki, and R. Ling 
(to be published). 
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The ^e is divided into two parts. During the first three days of lectures and labs participants 
learr. basic characteristics of MOS devices and use of simulation tools. A second sequence 
of lectures and labs covers layout and verification methods. 

Twelve students from six local firms and three universities attended the most recent course. 
Three students elected to do a chip design which will be fabricated in 3 micron CMOS through 
MOSIS. 

A seminar on fault simulation has been organized and will be held on December 18. Promi- 
nent researchers from both universities and industries have been invited to talk about recent 
developments as well as the application of fault simulators to industry problems. 

8    Progress on the Network C Simulation System 

(W. Beckett) 

There have been three areas of development activity for Network C (NC) over the past six 
months. 

1. THE MOS BEHAVIOR CALCULATION. 

The MOS behavior calculation which was presented in the last semiannual report has been 
reimplemented using a different approach. The previous method used numerical integration to 
compute the response of subcircuits within a MOS system to input stimuli. This process was 
working reasonably well for circuits with rather large node capacitances (like 2 micron NMOS) 
but did not seem to work for circuits with small node capacitances (like 1.25 micron CMOS). 
The problem was that in order to make the integration stable for the small capacitance values. 
a small time step had to be used. This small time step, in turn, increased the execution time 
beyond practical limits. 

A second problem was that the integration based method could not handle the case of zero 
node capacitance. Zero node capacitance does not come up in practice but it is still a useful 
modeling abstraction in some cases and it was felt desirable that NC models evaluate this case 
correctly. 

It was decided to replace the numerical integration with a general non-linear equation solver 
based on Newton's method. While this approach involves substantially more computation per 
time point than numerical integration, it was believed that an order of magnitude reduction 
in the number of time points required could be achieved while maintaining an acceptable level 
of accuracy. 

Practical implementations of Newton's method usually include some kind of line search along 
the Newton direction. This improves both the stability and the performance of the method. 
The typical algorithm computes the Newton direction, which requires solving a linear system 
(whose coefficient matrix is the Jacobian of the system) for the Newton correction and then 
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moving back along this correction until the norm of the residual vector or right hand side of 
the system is reduced. At this point, the Jacobian is recomputed and the process is repeated. 

It was considered extremely desirable to avoid this recalculation of the Jacobian in as many 
cases as possible since each Jacobian approximation requires n function evaluations where n 
is the rank of the system of equations. Consequently the above method based on simple line 
searching was replaced with Broyden's 1965 Method. This method is described in Nonlinear 
Programming: Analysis and Methods by Mordecai Avriel, on page 354. 

Broyden's method uses line searching in a similar manner to that described above but when it 
is time to obtain a new Jacobian, Broyden's method computes an approximation to the new 
Jacobian from the current Jacobian using the results of function evaluations already computed 
during the line search. In other words, you get the new Jacobian without any additional 
function evaluations. 

Actually, Broyden's method is even better than indicated above because the updating formula 
can be transposed so that it will update the inverse Jacobian directly rather than the Jacobian. 
Using the formula in this form means that each successive Newton correction is produced using 
a simple matrix multiply rather than by solving a linear system. This is another substantial 
time-saver. 

The drawback to Broyden's method is that it requires a good first approximation to the inverse 
Jacobian at the solution in order that the series of approximations to the inverse /acobian 
converge. In running several tests of the method on general non-linear systems I have seen a 
number of practical cases in which the method can be very slow to converge. Fortunately, in 
the case of MOS circuits, the branch relationships are all produced by the same circuit element, 
namely the MOS transistor, and the model for this transistor is very nearly tri-linear with very 
smooth transitions between the regions. For networks consisting of such well behaved and 
gentle circuit elements, Broyden's method seems to work extremely well. 

The following tests were performed using twenty-six transistor master-slave CMOS latch. 

1 dumber of time points CPU t ime 
in forecast interval (CYBER 170/750) 

New Method 400 17.315 
(Newton-Broyden) 200 8.858 

100 4.195 
40 1.799 

Old Method 
Numerical Integration 400 4.165 
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If the same number of points are computed for each forecast, the new method is, as expected, 
substantially slower than the previous method, in this case about a factor of four. However, in 
the case of the integration method, fewer than 400 points produce an unacceptably inaccurate 
solution. An acceptable plot was produced using the new method at forty time points per 
forecast and in this case the run time is substantially less than the integration method, better 
than a factor of two. 

2. NEW FOUR PARAMETER TRANSISTOR MODEL. 

The simple DC MOS law transistor model previously used by NC has been replaced. The new 
model is based on the one described in the Design and Analysis of VLSI Circuits by Glasser 
and Dobberpuhl, page 95. For PMOS the NC formulation of this model is given by: 

If 

PHIFN = K*T*LOG(ND/NI)/Q 
GAMMA = SQRT(2.0*ESI*Q*ND)/COX 
Tl = SQRT(VBS + 2.0*PHIFN) 
VTE = VTO - GAMMA*(T1 - SQRT(2.0*PHIFN)) 
DELTA = GAMMA/(2.0*T1) 
VDSAT = (VGS - VTE)/(1 + DELTA) 
KS = MU*COX(W/L)/2 

then 

CutofF: VDSAT >= 0 

IDS = -1.0E-12+VDS 

Linear: VDSAT <= VDS 

IDS = -KS*(2*VDSAT - VDS)*(1 + DELTA)*VDS 

Saturation:        VDSAT > VDS 

IS AT = -KS*VDSAT**2*(1 + DELTA) 

This model includes a second order drain current correction, DELTA, and the body effect. 
Also, a slight off resistance has been added. 

Finally, the following empirical correction for channel length modulation in saturation foui. 
on page 110 of Glasser and Doberphul is also included. 
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IDS' = IDS*(1 + (VDS - VDSAT)/(VA + VDSAT)) 

where VA = EA*L*SQRT(ND/NT) and EA = -5.0. 

The oresence of the off resistance and channel length modulation mean that this transistor has 
no region in which its c irrent is independent of the source drain voltage. This improves the 
stability of the numerical method since it helps to avoid singular Jacobians. 

3. CONTINUOUS TIME SYSTEM ANALYSIS AND EVALUATION. 

A new facility has been developed for NC that allows the system to represent and evaluate 
models of analog cinndts. The vev facility incluies support for proeedural moJcls of analog 
circuit elem 'ike bipolai  u-ansistors, resistors, capacitors, diodes, and opamps.    It also 
allows instances of these elements to be specified in the elements lists of circuit definitions. 
The syntax is the same as that used for all other NC circuit elements. Within the model 
bodies, the declarator 

network float analog x; 

is used to indicate the terminal of an analog device. 

A new circuit analysis routine which is analogous to the MOS circuit analysis routine, collects 
closely coupled subnetworks of analog devices together into analog subnetworks. These sub- 
networks are evaluated at equally spaced time points by a general non-linear equation solver. 
This adds a continuous time computation capability to the main loop of NC which previously 
was purely based on discrete event scheduling. 

The outputs from the analog subcircuits may drive other types of subcircuits. In turn, the 
inputs to analog subcircuits may be taken from other types of subcircuits. It is possible', for 
example, to couple the output of a functional level model directly to the input of an anLlog 
circuit level model. The outputs of the functional model are interpreted as ideal voltage sources 
in the analog model in this case. It is also possible to con-cct things the other way. in * fiich 
case, the output node of the analog circuit would appear lo the functional model sensing it as 
a periodic stream of events. 

The non-linear equation solver used for analog circuit evaluation uses a technique I call residual 
sweeping which is described in a paper by H. T. Kung, "The Complexity of Obtaining Starting 
Points for Solving Operator Equations by Newton's Method", which appeared in Analytic 
Computational Complexity, J. Traab, Academic Press, 1976. The idea is that if X is not a 
solution to F{X) = 0, then F(X) = R, R being the residual. This being the case, X is a 
solution to the system F{X) - R = 0. The family of systems F{X) - k* R = 0 for k in [0,1] 
then contains the system for which a solution is sought but not known (Jk = 0) and a system 
for which the solution is known but not sought (k = 1). The object is to try to move X and 
k at the same time until X satisfies F and k = 0. NC sweeps it from 1 to 0 using a Fibonacci 
search. 

The importance of this procedure is that when coupling functional and analog models together 
it is possible that the output of the functional model may change abruptly. This will mean that 
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the last available solution for the analog system, namely the last time point computed, will not 
be a good first guess for the computation of the current point since conditions have changed too 
drastically. (Note that these changes appear on input nodes which do not have corresponding 
terms in the Jacobian). In this kind of situation a conventional Newton implementation is 
quite likely to fail to conve. e. The residual sweep is a technique for getting a better first guess 
for the current point than just the last point. Indications so far are that the technique works 
very well. 

With the inclusion of the analog circuit modeling capability, NC achieves closure over the 
complete range of models of lumped element electronic circuits and systen .s. 
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Declarative Descriptions for VLSI Generators 

Abstract 

High-level descriptions which can precisely describe a circuit among multiple equivalent representations 
are introduced. Syntax and semantics for layout, mixed mode, schematics and functional descriptions are 
presented. They are illustrated by two examples: a decoder and a multiplier. These descriptions can facili- 
tate the VLSI design process and serve as a comprehensive documentation tool. 
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1. INTRODUCTION 

Design descriptions of VLSI components and systems are an "integral part of the design process" [Waxman 

86]. In the context of the VLSI generator project in progress at the University of Washington, we present a 

declarative generator model which can be used to guide the generation process of a circuit. The description in the 

model is robust, natural, simple, expressive, and is structured in a hierarchical manner. It can precisely and 

abstractly describe a circuit across its multiple representations. It also serves as a comprehensive tool that 

documents the designer's ideas as well as the complexities of the circuit. 

1.1. Design Generator Model 

A design generator is defined as a program that produces a family of circuit designs, each one solving a 

different instance of a particular problem The input is a problem-specific set of parameters; an example for the 

output is a CIF (CalTech Intermediate Form) definition of the layout cf the mask layers. One of the objectives of 

the design generator research is to develop a generator construction methodology with appropriate abstractions, 

procedures and tools to assure production of correct, quality parts [UW/NW 84]. 

We use the term "model" to refer to a complex data structure that guides the generation process. The 

model fills the gap between the "high level" input and various outputs such as the layout Figure 1-1 illustrates 

the role that the model plays in the generation process. The model is an overall static description of one instance 

of a circuit. It consists of leaf cells, a set of descriptions, and a catalog which includes the appropriate 

characteristics of this circuit. These components are produced by execution of the circuit specific generator 

software routines. Under the guidance of the model, the circuit-independent generator routines can create outputs 

such as the layout or the schematic diagrams at the gate or the transistor level of the circuit. 

Software Routines Model Generator Routines 

Figure 1-1:   The generation process 
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The model should be sufficiently complete, so that a program which is guided by the model can generate 

the layout or other circuit descriptions. On the orher hand, it should be sufficiently abstract to be able to capture 

the complex data structure of a design. This paper concentrates on the declarative description of the model. 

1.2. Multiple Representation Problun 

High level descriptions which can precisely describe a circuit across its multiple equivalent representations 

are needed in the design process. With abstraction, the descriptions can capture the information of how an 

instance of the circuit is built and how the circuits vary with the parameters. The declarative descriptions in the 

model will serve two functions: (1) design guide, and (2) documentation. 

The declarative descriptions are a hardware description language(HDL). According to German & 

Lieberherr [German 85], HDLs can be divided into three categories: 

The first category consists of languages that are purely functional specifications and do not necessarily 

imply a specific structure of the described circuits. One such language is ^ FP (a variation of the Functional 

Programming language FP) [Sheeran 83] that describes both the semantics (behavior) of a circuit and its layout (a 

floor-plan). 

In the second category we can place languages that allow both functional and structural specifications. They 

can be further divided into procedural and non-procedural classes. The latter offer safer descriptions than the 

former in the sense that more compile-time checks can be done. Among the procedural languages, we can cite 

ALI [Lipton 82] that is used to specify layouts free of design rule violations and Zeus [German 85] whose 

principles of structuring and much of the syntax are modeled after MODULA-2. Prolog [Suzuki 85], a non- 

procedural language, has been used for describing VSLI chips as concurrent building blocks connected by wires. 

In the last category, we find languages that are only concerned with structure such as Regular Structure 

Generator (RSG) [Bamji 85] which uses previously defined cells to hierarchically build larger cells via macro 

abstraction, Escher [Clarke 85], a geometrical layout system for recursively defined circuits, and SLL, a Symbolic 

Layout Language [Ellis 81], that is the human-readable form of the schematic, logic, layout, and simulation 

information about a circuit in the Ruby database system used at the University of California, Berkeley. 
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2. DECLARATIVE DESCRIPTIONS 

2.1. Overview 

The high level descriptions which will be used for design and documentation in the generator project should 

have the following fundamental properties: (1) Simplicity and Naturalness, (2) Expressiveness, (3) Abstraction 

and Hierarchical Structure, and (4) Technology Independence. Each description describes an instance of a family 

of circuit designs in one of four possible representations: layout, schematic diagram (gate level and transistor 

level), and functional description. A description consists of two parts: (1) the declarative part, which includes 

the name of a circuit, the type of the representation, a list of parameters, a collection of leaf cells, and a set of 

imported functions; and (2) the imperative part, which consists of a collection of statements used to describe an 

instance of a circuit, e.g. a decoder with three select wires in NAND gatt, style. The description for the layout or 

the schematic representation can be regarded as a collection of objects (leaf cells or abstract objects) and a set of 

relations among these objects. For the functional description, the intermediate hidden mechanisms between inputs 

and outputs are described. 

The syntax of this new high level description is designed to be as close to that of the "C" programming 

language as possible since the genepators are written in C. The Extended Backus Naur Formalism (EBNF) 

definition for the declarative description can be found in [Liem 86]. 

2.2. Declaration 

The syntax of the declarative part of a description is of the form: 

NAME <circuit_name> ; 

TYPE <representation_type> ; 

PARAMETER <parameter_list> ; 

LEAF CELLS <cell list> ; 

FUNC <function_list> ; 

Boldface characters are used to indicate ke. required syntactic elements.   FUNC <function_list> is 

optional and LEAF CELLS <cell_list> are not used in the functional description. 

The    representation type>    is   either   LAYOUT,   MIXED,    SCHEMATIC    or    FUNCTIONAL. 

<parameter_list> is a list of inputs to the circuit.   They are arbitrarily chosen; however, the values that they are 

bound to in the declarative part are constant through the entire description.   <cell_list> contains all the leaf cells 
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that are used in a description to generate a geometric representation (the layout or schematic diagram in gate level 

or transistor level) of a circuit Leaf cell is the lowest level module in the hierarchy of a description and is part of 

the system library. Following the <cell_list>) the functions that aid in the circuit description are specified. 

Functions are user-defined. For example, binary can be a function which will return a binary representation of a 

number. 

2.3. Objects 

Leaf cells are the primitive objects to which geometric operators can be applied, and out of which more 

complex objects {abstract objects) can be built. In general, they have some predefined, sufficiently general, 

functionality. For example, it can be a NAND gate used for the schematic description of a decoder or a physical 

layout of a half-adder used for the layout description of a multiplier. A leaf cell can be instantiated as many 

times as desired by specifying the number of repetitions. For example, if Icell is a leaf cell, then | (Icell 0) 

means to create an object which is a collection of n copies of Icell and the relations among these copies will be 

defined by the geometric operator |, i.e. vertical composition. A leaf cell without an argument is by default an 

instance of that cell in the user's working directory. 

Abstract objects are created to provide designers with the mechanism to describe a circuit representation 

hierarchically so that most of the details at one level of the hierarchy are truly hidden from all higher levels. An 

abstract object can be defined recursively. An alias of a leaf cell, an array of leaf cells, a group of heterogeneous 

leaf cells, or a combination of the last two is an abstract object Moreover, an array of abstract objects, a group 

of heterogeneous abstract objects or a combination of these two is also an abstract object. It should be noted that 

an abstract object represents an integrated consecutive part in the geometric placement. Generally, it is a module 

which has some functionality. Abstract objects can also be instantiated as many times as desired by providing the 

appropriate arguments. Thus, "(row[i](i=0..4)) generates five objects whose relations are defined by the operator 

--, i.e. by horizontal composition. An element of an array of abstract objects can be accessed by specifying the 

subscript as in most programming languages. Abstract objects are considered global. Thus, object names within a 

description must be unique. 

Given the features of leaf cells and abstract objects mentioned before, each description can use many levels 

of abstraction. At the highest level of the hierarchy, it is a single abstract object - the name of the circuit that the 

designer intends to describe. At the lowest level of abstraction, the circuit is a collection of leaf cells. The 

description of a representation of a circuit is recursive in nature -- each abstract object is specified as a collection 

of lower level objects.   Since an abstract object is defined after it is used, the description of an object promotes 
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"top down" design or "stepwise refinement". 

2.4. Operators 

The operators which are used in our declarative descriptions can be arranged in the following groups:   (1) 

geometric, (2) arithmetic, (3) relational, (4) logical, and (5) assignment ( = ). 

The geometric operators take objects as arguments and produce objects as results.  The first four operators 

are used to combine objects into more complicated abstract objects. They are shown in Figure 2-1. 

A B 

A --   B 

A B 

A  — n  B 

B B 

A '   B A I n B 

Figure 2-1:   Geometric operators for combining objects 

The last three operators are used for linear transformations. They are shown in Figure 2-2. 

I Y 

A 

■» X 
A A 

mirror in X 
mirror in Y 

rotate -90 degree 
Figure 2-2:   Geometric operators for linear transformations 
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All geometric operators have the same precedence level and they are collectively left-associative in the 

absence of parentheses. The interface (which will be implemented by using registration marks) between two 

objects is not explicitly speeded since it is an implementation rather than a descriptive issue. 

Geometric operators are only use«, in describing the layout or schematic representations of a circuit. For 

functional descriptions, arithmetic, relational and logical operators are used as in conventional programming 

languages. The arithmetic operators are +, -, ♦, /, ♦♦ (exponentiation), and % (modulus operator). The relational 

operators are <=, <, == (equal to), != (not equal to), >, and >=. There are two types of logical operators; the 

logical connecaves include && (AND), and || (OR), while the bitwise logical operators include & (bitwise AND), 

[ (bitwise inclusive OR), * (bitwise exclusive OR), and " (one's complement). 

2.5. Flow of Control 

Two fundamental flow-of-control constructs are provided to enhance the expressiveness of a description; IF 

(decision making) and looping. IF is used to specify conditions. Looping is expressed in the form of either (1) 

providing the number of times for repetition, for example, --(X(m)) means to create m horizontally joined 

instances of X, or (2) providing the upper bound, lower bound and step of the loop index, for example, |(X[i](i = 

4 .. 0, -2) means to create 3 instances of X, with X[4] situated at the bottom, X[2] situated in the middle, and 

X[0] situated on the top. 

3. MULTIPLE REPRESENTATIONS 

A decoder1 will be used throughout as a representative and simple example. 

3.1. Layout Description 

The layout description for an instance of a circuit describes how the leaf cells have to be displayed. The 

description is hierarchical, and uses substitution. That is, a bigger abstract object is composed of leaf cells or 

conceptually smaller abstract objects. 

The following sutements illustrate the layout description for a 3-to-8 NAND style decoder. 

NAME   decoder; 

TYPE   LAYOUT; 

'The author of the decoder generator is Many Sirkin. 
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PARAMETER   n = 3; 

LEAF CELLS   dec_na_ll, dec_na_i_inv, decnalc, dec_na_low, 
decnahigh, dec_na_out, dec_na_one, dec_na_zero; 

FUNC   binary; 

MAIN 

decoder = row [2**n] | (| (row [i] (i = 2**n - 1 .. 0))); 

row [2**n] = dec_na_ll -- (-- (dec_na_i_inv (n))) -- dec_na_k:; 

row [i] = dec_na_low -- select_wire [i] 
-- decnahigh -- dec_na_ouq 

select_wire [i] - ( -- (X [ij] 0' = n .. 1))); 

X [ij] = dec_na_one, if binary (ij) == 1 
= dec_na_zero, if binary (i,j) — 0. 

The layout representation is shown in figure 3-1.   The corresponding hierarchical structure is shown in 

Figure 3-2. 

The fragment:   decoder - row [2**n] | (| (row [i] (i = 2**n - 1 .. 0))); 

creates an object named decoder which is made up of an abstract object, row [2n]> and 2n vertically stacked 

abstract objects named row [2n - 1], row [2n - 2] row [0].  row I2n - 1] is situated on top of row [2n], row 

[2n - 2] on top of row [2n - 1], etc.   At this level of abstraction, row [2n] and row [i] can be thought of as 

primitive components. Their lower level components are defined next 

The fragment:   row [2**n] = dec_na_ll - (-- (dec_na_i_inv (n))) - dec_na_lc; 

specifies the components of row [2n] one level lower in the hierarchy. Row [2n] consists of n horizontally 

joined instances of dec_iia_i_inv with decjiajl on the left hand side and dec_na_Ic on the right hand side. The 

elements in the arraylike structure row are further defined by: 

row [i] » decjwjow -- select_wire [i] - dec_na_high - dec_na_out; 

For i with the values in the range 0 to 2n - 1, row [i] is created by horizontally joining from left to right an 

instance of the leaf cell dec_iia_low, an abstract object select_wire [i], an instance of the leaf cell decnahigh, 

and finally, an instance of dec_iia_out. 

Moving one level down in the description hierarchy, the abstract object selectwire [i] is described in terms 

of a collection of another abstract object, X. The fragment select_wire [i] = (-- (X [i,j] (j = n •• 1))); specifies that 
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Figure 3-1:    Layout representation 
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Figure 3-2:   Hierarchy of objects in layout description 

each selectwire consists of n horizontally joined instances of X with indices from n to 1, from left to right 

respectively.   It is important to note that index i is required in the expression.   It serves to distinguish different 

instances of select_wire. The definition of X clarifies this point Abstract object X is defined as: 

X [ij] = dec_na_one, if binary (ij) == I 
= dec_na_zero, if binary (ij) == 0; 

That is, if the ;th bit of binary representation of i is 1, then substitute dec_na_one for X.   Otherwise, substitute 

decnazero for X. 

Note that it is relatively easy to identify components of the circuit which are dependent on or independent 

of the parameter from the description. For example, the number of instances of dec_na_i_inv in row [2n] 

depends on the size of the input However, the structure of row [2n] is invariant. In other words, decnajl is 

always the leftmost component and decnajc is always the rightmost component regardless of the number of 

instances of dec_iiaj_inv in the middle. This observation is important in the understanding of a decoder over the 

entire space of parameters. 
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3.2. Mixed Mode Description 

A mixed mode descripdon illustrates how components (such as gates, transistors, and intersections of wires, 

etc.) are connected to perform a certain function. This representation can help create the logic network description 

for NETLIST and simuladon. A mued mode description is also hierarchical and uses substitution. 

The mixed mode descripdon for a 3-to-8 NAND style decoder is as follows. 

NAME   decoder; 

TYPE   MIXED; 

PARAMETER   n = 3; 

LEAF CELLS   gndjnix, zero_mix, one_mix, in_mix, out_mix; 

FUNC    binary; 

MAIN 

decoder = row [2**n] | ( | (row [i] (i = 2**n - 1 .. 0))); 

row [2**n] = (-- (injnix (n))); 

row [i] = -- gndjnix -- (-- (X [ij] (j = n .. 1))) - out_mix; 

X [i,j] = onejnix, if binary (i,j) == 1 
- zerojnix, if binary (ij) mm 0. 

The leaf cells are shown in Figure 3-3.The leaf cells in the mixed mode description correspond to those in 

the layout description. For example, zeromix and decnazero, onemix and decnaone, and inmix and 

dec_na_i_inv perform the same functions. Figure 3-4 shows the expansion of the output of the mixed mode 

description (a schematic diagram at the transistor level) for a 3-to-8 NAND style decoder. The hierarchy of 

objects in mixed mode descripdon is the same as in the layout case. 

The close correspondence between these two descriptions is very important for design and documentation. 

The mixed mode representation provides one higher level of abstraction in circuit representation and is more 

immediately descriptive than the layout representation. Therefore, the corresponding part in the layout 

representation can become more understandable to the designer and users of the generator. Moreover, suppose 

that after verifying the electrical correctness of the circuit through the mixed mode representation, the designer 

decides to change part of the design. It is relatively easy to locate the corresponding part in the layout 

representation and make appropriate modificai cm. 
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gncLmix in_mix out_mJx 

r 
zero_mix one_m1x 

Figure 3-3:   Leaf cells for mixed mode description 

3.3. Schematic Description 

The schematic description provides one higher, more descriptive level of abstraction than the mixed mode 

description in üK enst that the graphical version of the former is at the gate level, while that of the latter is at the 

transistor level. 

The following is he schematic description for a 3-to-8 NAND style decoder. 

NAME   decoder; 

TYPE   SCHEMATIC; 

PARAMETER   n - 3; 

LEAF CELLS   nandsche, zero_sche, onesche, no_connec_sche, insche; 

FUNC   binary; 

MAIN 

decoder = row [2**n] | ( | (row [i] (i = 2**n - 1 .. 0))); 

row [2**n] - (-- (in_sche (n))); 

row [i] - (-- (X [ij] (j = n .. 1))) -- nand_sche; 

X [i,j] = (| (C [i.j,k] (k = 1 .. n))); 
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Figure 3-4:   Mixed mode representation 

C [ijjc] = one_sche, if binary (ij) == 1 && k == j 
= zerosche, if binary (ij) == 0 && k == j 
= no_connec_sche, if k != j. 

Figure 3-5 shows the internal details of each leaf cell, and figure 3-6 shows the schematic diagram of a 3-to-8 

NAND style decoder. 

The hierarchical structure of the objects used in the schematic description is shown in Figure 3-7.   it is 
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nand-sche 

zero-sche 

one-sche 

no_connec-sche 

in-sche 1 
Figure 3-5:   Leaf cells for schematic description 

important to note that the hierarchy is extended one level lower, but the correspondence with other descriptions 

still holds. 

3.4. Functional Description 

The previous three descriptions specify the geometric relations of objects. In contrast, the functional 

description does not specify the relative positions of objects, but how a particular design should respond to a given 

set of inputs. In other words, the algorithm to be performed by a circuit is described. The following statements 

illustrate the functional description for a 3-to-8 NAND style decoder. 

NAME   decoder; 

TYPE   FUNCTIONAL; 
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tJ u u 
Figure 3-6:    Schematic representation 

PARAMETER   n = 3; 

FUNC   nand, binary; 

MAIN 

decoder = OUTPUT [i] (i = 0 .. 2 ♦♦ n - 1); 

INPUT - A [j] (j - n .. 1); 

OUTPUT [i] = nand (X [i,j], j = n .. 1): <timirg_spectfication>; 
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Figure 3-7:   Hierarchy of objert; in schematic description 

X [i,j] - binary (ij) ♦ A|j] + " binary (i,j) • " A[j]. 

The imported function nand simulates the function of a NAND gate. The statement 

decoder - OUTPUT [i] (i - 0 .. 2 ♦♦ n - 1); 

denotes that there are 2n outputs named OUTPUT [0], OUTPUT [1]  and OUTPUT [2n - I].    A similar 

notation applies to INPUT. Each input and output is one bit wide. These two statements correspond to the first 

two statements in the schematic description: OUTPUT [i] is functionally equivalent to row [i] and both row [2nJ 

and A [j] (j - n .. 1) deal with the inputs (the complement of A [j] is specified by the complement operator'). 

OUTPUT [i] is further defined by the function nand: 

OUTPUT [i] « nand (X [ij], j « n .. 1): <timing_specfication>; 

The <timing_specfication> specifies when the output bit becomes stable and available for an external circuit.   It 

can be expressed in terms of i, clock period (T), and time delay (td).  The values of T and td are technology and 

implementation dependent 

Depending on the yth bit of the binary representation of J, i.e. binary (ij), the value of X [ij] is either the 

input A [j] or its complement ATJT. Note that given an OUTPUT [i], the binary representation of i corresponds to 
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the inputs A[n] A[n-1] ... A[j] ... A[l], where A [n] * 2nA + A [n -1] * 2n-2 + ... + A [1] ♦ 2° = i.  Note also thai 

for an asserted OUTPUT [i], the inputs to the NAND gate must be all I's. The algorithm is thus the following: 

X [ij] - A [j], if Wnary (ij) — 1; 
X [i,j] = XTU, if binary (i,j) .. 0; 

Since binary (ij) is either 1 or 0, the algorithm can be simplified by stating that 

X [i,j] - binary (ij) * A [j] + ' binary (i,j) * ' A [j]. 

While the functional description uses arithmetic operators rather than geometric operators to describe a 

circuit, it still corresponds with the other descriptions. As before, the mechanism which is used is substitution and 

the structure of the description is hierarchical. The major difference is that the leaves of the tree now are inputs 

or their complements while the leaves of the trees in other descriptions were leaf cells. 

4. A MORE COMPLEX EXAMPLE -- MULTIPLIER 

This section will present a more complex example, a multiplier, to illustrate the versatility of the notation. 

mult is a generator for constructing an M x N cmos multiplier layout2. A 3 x 3 signed two's complement 

multiplier is chosen as an example in our discussion. We only show the schematic and the functional descrip'ions 

here. The layout and the mixed mode descriptions can be found in [Liem 86]. 

4.1. The schematic Description 

The schematic description for a 3 x 3 signed two's complement multiplier is as follows. Figure 4-1 shows 

the expansion of the schematic description. 

NANE   multiplier; 

TYPE   SCHEMATIC; 

PARAMETER   m = 3, n - 3; 

LEAF CELLS   SignExt, FullMult, LSignExt, Comp, RComp, Add; 

MAIN 

multiplier - adder | row[n] | (| (row[i] (i - n - 1 .. 1))); 

row[i] - SignExt -- (-- (FullMult (m - 1))); 

:The author of Üie multiplier generator is Wayne Winder. 
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Figure 4-1:   Schematic diagram of a 3 x 3 multiplier 

row[n] = LSignExt -- (-- (Comp (m - 2))) - RComp; 

adder = (-- (Add (m + 1))). 

To generate a signed two's complement multiplier, six leaf cells are needed. SignExt generates the sign 

extension bits f- and gj for 0 S j 5 n-2, while LSignExt evaluates the last sign extension bits, fn j and gn ,. The 

function of FulIMult is to calculate the sum of carry out „ sum out , ■ and the ANDed function of X. and Y. for 

0 < i < m-2 and 0 < j S n-2. Comp and RComp evaluate the sum of cairyjautj n 2, sum_outi+] , and the 

ANDed function of X[ and Yn j, 0 ^ i 5 m-2. They are basically the same with the exception that Y , in 

RComp exits from the right hand side and curves down to the first bit of the ripple adder. Y , is one of the 

inputs to the lowest bit of the ripple adder because of the last term in the expanded version of the nth partial 

product, Yn 12
n"1. The leaf cell Add computes the sum of three inputs and produces one bit of the final product. 

In addition, the carry out is sent to the next higher order bit position of the ripple adder. 
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Thus row[i] accomplishes the process of forming the partial product, adding it with the previous cumulative 

sum and performing the sign extension. The function of row[n] is to perform the ANDing of the complement of 

multiplicand and Yn j as well as generate the cumulative sum and the last pair of sign extension bits, f , and 

gn.j. The object adder generates the higher order m+1 bits of the final product. The algorithm used for the 

multiplication is not evident from this description. Hence, we need a functional description. 

4.2. The Functional Description 

The funcrinnal description describes how the final product is generated given a multiplicand X with m bits 

and a multiplier Y with n bits. At the highest level, we could simply say that OUTPUT = X * Y. While this 

might be sufficient for some high-level functional simulation, further details will often be needed. The next level 

is described as: 

NAME   multiplier; 

TYPE   FUNCTIONAL; 

PARAMETER   m = 3, n = 3; 

MAIN 

multiplier = OUTPUT[/] (/ = 0 .. m+n-1); 

INPUT = X[i] (i = 0 .. m-1), 
Y[j] (j = 0 .. n-1); 

OUTPUT = X * Y 
= CS[n]; 

CS[k] = CS[k-l] + PP[k], if 1 < k < n; 

CS[0] = 0; 

PP[k] = Y[k-1] * X * 2**(k-l)) if 1 < k < n; 

PP[0] = 0. 

PP[k] represents the kth partial product and CS[k] represents the kth cumulative sum of the partial products. 

Note that the details of the extension of sign bit and the separation of carr and sum in each cumulative sum are 

not explicitly described here. This functional description corresponds to the given schematic description. The first 

n-1 rows of row[i] correspond to the first n-1 CS[k]'s while row[n] and the ripple adder are implicitly accounttd 

for by evaluating CS[n]. 
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At the lowest level of description, the generation of each bit of the product output and sign extension bit is 

shown. 

NAME   multiplier; 

TYPE   FUNCTIONAL; 

PARAMETER   m = 3, n = 3; 

FUNC   sum, carry, summation; 

MAIN 

/♦   TERMINOLOGY: 
CS[k] = cumulative sum of partial products; made up of partial 

sum and partial carry. 1 < k < n. 
PS[k] = partial sum; the sum portion of the result of an addition 

when the carry overs are not rippled through the higher 
order bits. 

PC[k] - partial carry; the carry portion of the result of an 
addition when the carry overs are not rippled through 
the higher bits. 
Note: PS[k] + PCM = CS[k] the total result of the 
addition. 

F[k]  = the higher order bit resulting from extending the sign 
bit during an addition. This is also the MSB of PC[k]. 

G[k]  - the lower order bit resulting from extending the sign 
bit during an addition. This is the MSB of PS[k]. 

RS[/] - sum bit generated by the ripple adder. This is also 
one of the product bits, n-1 < / < m+n-1. 

RC[/] - carry bit generated by the ripple adder. 
PP[k] = partial product; it is one bit of Y tinKs the vector X, 

then shifted appropriately. 
Fn[k,/] = bit with the 2**1 power of the /fcth evaluation 

of the function Fn.      */ 

multiplier = OUTPUT[/] (/ - 0 .. m+n-^l); 

INPUT - X[i] (i - 0 .. m-1), 
YÜ] (j - 0 .. n-1); 

OUTPUT = X ♦ Y 
- RippleSum; 

RippleSum = summation (RS[t]*2**t, t = m+n-1 .. n-1) + 
summation (OUTPUT[t]*2**t, t = n-2 .. 0); 

RS[/] = sum (PSfn,/], PC[n,/], RC[/]), if n-1 < / < n+m-2; 

RS[m+n-l] = sum (0, PC[n,m+n-l], RC[m+n-l]); 
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RC[/+1] = carry (PS[n./], PC[n,/], RC[/]), if n-1 < / < n+m-2i 

RC[n-l] = 0; 

PC[n,n-l] - Y[n-1]; 

/* cumulative sum is made up of partial sum and partial carry ♦/ 
/* PS[k] and PC[k] ire not added until next addition ♦/ 
CS[k] = PS[k] + PC[k], if 1 5 k < n; 

PS[k] = sum (PS[k-l], PCrk-1], PP[k]) 
= summation (PS[k,t]*2**t, t = m+k-2 ..k) + 

summation (OUTPUT[t]*2**t, t = k-1 .. 0); 

PS[0] = 0; 

/♦ The MSB of a partial sum is G[/l ♦/ 
PS[k,m+k-2] = G[k]; 

PC[k] = carry (PS^-l], PC[k-l]( PP[k]) 
= summation (PC[k,t]*2**t, t = m+k-1 .. k); 

PC[0] = 0; 

/* The MSB of partial carry is F[k] ♦/ 
PC[k.m+k-l] = F[k]; 

F[k] = F[k-1] | PP[k.l,nHk-2], if 1 s k ^ n-1; 

F[0] = 0; 

G[k] = F[k-1] * PP[k-l,m+k-2], if 1 < k S n-1; 

O[0] = 0; 

F[n] = F[n-l]|(-X[m-l]*Y[n-l]); 

G[n] = F[n-1] | (-X[m-l]*Y[n-l]); 

PP[kl = Y[k-l]*X*2**(k-l) 
= summation (PP[k,t]*2**t, t = m+k-2 .. k-1), if 1 < k < n-1; 

PP[n] = (X[m-l]*Y[n-l] - Y[n-l])*2**(m+n-2) + 
summation (Y[n-l]*-X[t]*2**(t+n-l)1 t = m-2 .. 0) + Y[n-l]*2**(n-l); 

OUTPUTS = RS[/]: <tirmng_spec>, if n-1 < / < n+m-1 
= PS[/+1,/]: <iiming_spec>, if 0 < / < n-2. 

Three functions, sum, carry and summation, are used.  Sum (a,b,c) is equal to a XOR b XOR c and Carry 

(a,b,c) is equal to ab OR be OR ac.  Summation is the addition of terms in the series.  This function simulates 
hjeh 

the     expansion     of    ZX. Thus,     summation     (RS[t]*2**t,     t     =     m+n-1     ..     n-1)     represents 
t-lc 
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RS[m+n-l]2m+n-1+RS[m+n-2]2m+n-2+...+RS[n-l]2n-1. 

This functional description is very close to the actual implementation of the algorithm. The multiplication is 

a sequence of carry-save additions with one ripple addition at the end. The 2's complement notation 

implementation requirements are handled in the sign extension(f and g) and the generation of the last partial 

product PP[n]. 

5. CONCLUSIONS 

In this paper, we have described the multiple representation problem and proposed a model which provides 

descriptions of the multiple equivalent representations of instances of a circuit for design and documentation 

purposes. A set of notations to be used in the various descriptions has been introduced. These notations have 

been created to make the descriptions simple, natural, expressive, and to show abstract, hierarchical structure and 

technology independence. Two examples, a decoder and a multiplier, have been used to illustrate the application 

of the descriptions. 

For each design, there are some common characteristics among the four different views of description. 

They are 

• The descriptions are declarative. 

• The hierarchical decomposition of the design proceeds recursively.   Multiple levels of abstraction 
make it possible to suppress unnecessary details and make the design more comprehensible. 

• Substitution is the mechanism to navigate in the hierarchical description. 

• There is a correspondence between different descriptions.   As a result, the change of design across 
different descriptions can be made easily. 

Various extensions to the declarative descriptions can be done to form a more powerful and flexible model 

that guides the generation process. Two areas of research which need further exploration are: building a 

translation system which can generate ;he appropriate outputs for different descriptions of a circuit; and creating 

a design database which can organize the design data across the multiple representations of a design. 
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The Energy Complexity of Transitive Functions 1 

LAWRENCE SNYDER & AKHILESH TYACI 
Department of Computer Science 
University of Washington 
Seattle, WA 98195 

Abstract 

We define a normal transitive function to be a function that embeds a computation of the 
permutation group generated by the cycle (1 2 3... n). Despite this restriction, the class of 
normal transitive functions is rich enough to include all the functions that Vuillemin showed 
to be transitive. A partial list consists of shifts, cyclic shifts, multiplication, convolution and 
linear transform. We show that for an implementation of these functions, where every wire 
is allowed to switch at most once, the average switching energy, Ea{C), is ß(n2). If a wire 
is allowed to switch more than once then we prove a lower bound of Ea{C) = n{n3'2). We 
prove that word systolic systems for transitive functions consume the same order of energy 
both on average and in worst case. In particular, the average case energy Ea{C) is n{A) and 
the worst case energy £„{€) is O(A), where A is the area of any embedding for a circuit C 
to compute a transitive function. However, to demonstrate that this unexpected behavior 
is not universal, we show the existence of a systolic system for a problem for which the 
average case and worst case energy consumptions can be separated. We also extend a result 
by Kissm on a lower bound on the worst case switching energy of 1-switchable functions. 
For any convex embedding of a circuit to compute a 1-switchable function within depth 
d{n), log'n < d{n) < n', with 0 < e < 1, EW{C) x d(n) is n(meix{nlogn, nd{n)). Note 
that every transitive function is also 1-switchable, implying that these iower bounds apply 
to transitive functions, as well. 

1    Introduction 

Due to engineering limitations on heat dissipation from a planar chip and a general trend 
towards energy conservation, energy efficiency of VLSI circuits has become an important issue 
in VLSI algorithm design. Despite relatively low energy consumption of CMOS technology, the 
energy dissipation is still an issue in the design of high performance systems for the following 
reasons. The circuit designers tend to overdrive the CMOS devices for higher speeds. Worst 
still, in CMOS technology, the power consumption is a direct function of the system frequency. 
Thus high performance architectures need to be designed even more carefully, to be energy 
conscious. Most bgh performance systems are based on the concept of pipelining or systolic 
dataflow. The trend towards integrating most of the architectural components onto fewer 
and fewer chips has encouraged the design of datapath and control components with systolic 
algorithms due to their simple communication structure. Vuillemin [10] identified an important 
class of vfunctions known as transitive functions. Interestingly, this class encompasses all the 
data path functions like multiplication and shifting. Thus, our result has a wide impact in as 
much as it frees the designer from considering energy optimization as one of the objectives of 
the design. The second result reconfirms the widely held belief that the designer can trade the 
speed of operation with the energy consumption. 

With the wider availability of VLSI design environments, and introducf n of systematic 
design methodology by Mead and Conway [7], relatively inexperienced designers are transcrib- 
ing their algorithms into silicon. Often, such engineering applications include multiplication, 
convolution and linear transforms. Interestingly, all these functions are normal transitive func- 
tions. 

'Supported in part by DARPA under Contract MDA903-85-K-0072 
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Lengauer and Mehlhorn [6] have shown that for a function v/ith AP2 = 0(n2), switching 
energy is bounded from below by n{AP), where A s the area and P is the period of a pipelined 
computation. Kissin [5] proved that for some monotonic circuits, switching can be superlinear, 
but switching energy is still bounded by 0{A). Kissin [4] explores switching complexity of 
comparison, or and addition functions. She shows that for 1-switchable functions, fi{nlogn) 
worst case switching energy is required i:'computation is to be performed 'within depth 0{log n). 
She also gives a linear average energy >.yout for an uldfer. 

We first describe the VLSI model of computation and energy consumption We prove 
a lower bound of ß(n2) on the average switching energy of lormal transitive xtions. In 
section 4, we show that the lower bound on average switching energy of a tn-asitlve systolic 
system matches the upper bound on the worst case switching energy. We coucu'de with the 
result about depth switching-energy trade-off. For a detailed version of thi* vj-\r, the reader 
is referred to the technical report [8]. 

1    Model 

We will formally define the model in which we charge for energy. Our enerpv model is the 
same as the one originally outlined by Kissin [5], For the sake of completenes. i will briefly 
describe the model. The VLSI model is the commonly accepted one, propose ' Thompson 
[9]. A layout can be viewed as an embedding of the communication graph in a rtesian grid. 
Each grid point can either have a processor or a wire passing through. A • can not go 
through a grid point unless it is a terminal of the processor at that grid point. "es have unit 
width and bandwidth and processors have unit area. The initial data values ; localized to 
some constant area, to preclude an encoding of the results. 

Let u be the unit switching energy defined to be the energy spent when a wire of unit 
length switches (changes state either from a 1 —> 0 or from a 0 -♦ 1). Note thai a minimum 
size processor also consumes 0{u) energy when it changes state. We will say t;u\t a wire of 
length / consumes /?(/) energy when it switches. It is implicit her? ihat u is a technology 
dependent constant. 

We do not account for the switching energy consumed by the processors. This 's m accor- 
dance with the widely held belief that the wires take up most of the area in a LJI layout. 
Since »' i are working with the lower bounds on switching energy, energy consul option of the 
wires definitely provides a lower bound on the total energy consumed. 

W work with the Uniswitch Model (USM), as defined in Kissin [5]. In this model, a signal 
can p opagate along a wire of arbitrary length in constant time. This restricts every wire in 
an acyclic circuit to switch at most once, for unpipelined computation. A symmetric notion 
is that of the Multiswitch Model. Kissin shows some upper bounds on switching energy of 
certain circuits in the Multiswitch model. 
ASSUMPTIONS: 

1. Each node in the circuit depends on an input, i.e., for each node, a pair of inputs exists 
which makes that node switch. 

2. All the inputs are synchronous.   In other words, they are applied at the input ports, 
simultaneously. 

3. Circiits are synchronous. 

We denote a circuit C(V, W) as a giaph, where V is the set of nodes and W is the set of 
edges or wires in V x V. 

Definition 1 A circuit C{V,W) is said to be in state s:V\jW —>• {0,1}, if 3 is consistent 
according to the following conditions. 
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• For an input node J,, s{x,) is consistent with the input XQXI ...xn-i. For an input wire 
W = {Xi,y), s{w) must equal 5(x,). 

• Non input nodes and edges have the values consistent with the input values and the 
labels jf the nodes. For example, for a node, v, labelled by A with state of input wires 

s{wi) = 1,5(1^2) = 1» «(») miLst e(lual 1- 

Definition 2 A wire w (node v) is said to have switched from state SQ to state Si if so{w) / 
Si{w) (so{v) ? si{v)). 

We define a measure of energy consumption for a circuit. When a circuit C is subjected 
to an input x, let wire u;, switch k; times before the circuit is settled. Let /, be the length of 
a wire Wi in the circuit C"s embedding in a grid. Then the energy consumption for circuit C, 
Ew{C, s, x) in state s with 1 as the input is defined to be u x SwjgW *• x '«• ^or t^e Uniswitch 
model ki < 1. We will distinguish between woi-st case energy consumption and average case 
energy consumption. 

Definition 3  The worst case energy consumption fur a circuit C, EW{C), is defined to be 
max3jEw{C, s, x), where max is taken over all (state, input vector) pairs. 

We similarly define ^he average case energy consumption. Note that an input assignment 
z defines the state of the circuit completely. 

Definition 4  The avarage case energy consumption for a circuit C is defined to be its energy 
consumption averaged over all initial states end all input vectors. Thus Ea{C) = 
X^J,2-£'H'(C,,5,f)/22'1, where n is the number of input bits. 

For further details of this model, the reader is referred to Kissin's papers [4], [5]. 

3    Normal Transitive Functions 

In this section, we show that for a general implementation of a normal transitive function 
(defined below), the average case energy Ea{C) is ß(n2). The class of normal transitive 
functions encompasses all the functions that were used as examples of transitive functions by 
Vuillemin [10]. We firsi show that for a normal transitive function, Ea{C) is no less than the 
switching energy consumed by n/2 edge disjoint paths from input ports to the output ports. 
Then we show that the energy consumed by these n/2 paths is ß(n2). 

We first define a class of functions analogous to Vuillemin's transitive functions. 

Definition 5 A boolean function /(xi,xj,... ,xn,ci,C2,... ,cfc) = (yi,2/2,-• •, J/n) " »aid to be 
normal transitive, if it computes either *ne permutation group generated by the cycle (1 2 3... n) 
or a product of such groups. The bits Ci,Ca,... ,Cfc are the control bits specifying a permutation 

group element. 

In other words, the normal transitive functions embed a shifting like computation as a special- 
ized instance. It is easy to verify that all the functions Vuillemin shows to be transitive, are 
just normal transitive. All his proofs show a reduction to the shifting permutation group. In 
particular, shifts, cyclic shifts, multiplication, convolution, linear transform and three matrix 
multiplication are all normal transitive functions. 

We exploit the structure of the shift permutation group to show that when each of the 
n input bits and c control bits switch independently with probability 1/2 each, the expected 
number of output bits that switch is n/2. 

^ Theorem 1  For a normal transitive function, on average n/2 output bits switch. 



PROOF SKETCH:   We prove the result for a shifting permutation group.    It can be easily 
extended to a product of two shifting permutation groups of different order. 

Let XJ denote the jth input bit and let j// denote the /th output bit. Without loss of 
generality, assume that at time t, the control bits specify the identity permutation, t'.e., yj(t) = 
•^(O.l <./<*»• Since / computes the shift permutation group, for any ir £ G such that the 
encoding of TT differs from encoding of the identity permutation by fc/2 bits, y{j+k)modni' +1) = 
Xj{t + 1), 1 < j < n, for some 0 < k < n- I. In other words, each input bit is connected to an 
output bit k bits up/down, n/2 of n input bits are expected to switch. There are two cases. 

1. x}{t) a X(;+Jt)modn(<). In this case, Xj{t) = l/(J+jt)modn(0- The probability that Xj{t) does 
not equal x}{t + 1) is 1/2. This implies that the probability that the bit y(j+fc)modn(0 # 
l/(;+*)niodn(<+l)is 1/2. 

2. Xjit) ^ X(j+k)modn{t). This case is similar to the previous one. Here, i,(<) £ l/(j+jt)modn(0- 
The probability that Xj{t) does not equal Xj{t + 1) is 1/2. Once again, this means that 
the probability that the bit j/u+jt)modn(0 t yu+k)modnit + 1) is 1/2. 

This shows that the probability of each output bit switching independently is 1/2. Hence 
the number of output bits expected to switch is n/2. 

The previous theorem shows that half of n output bits are expected to switch, even when 
we allow the permutation group element to change. Let I and O be the sets of input and 
output bits respectively. A partition of the chip is denoted by p = {IL,IR,OL,OR), where 
T = IIUIH and O = OLL)OR. Let (i,o), where t € I, o 6 O, be an input bit position, output 
bit position pair. A pair (t, o) is said to be a straddled pair if either i £ II k o £ OR OT i £ IR 

& o 6 OL. There are n/2 (i,o) pairs that switch. In order to be able to show that most of the 
area of a chip switches, we have to show that a significant fraction of n/2 switching (j,o) pairs 
are straddled pairs. 

Lemma 1  For a normal transitive function, at least n/3 ofn (i,o) pairs are straddled pairs. 

PROOF SKETCH: A partition could either divide I relatively evenly between two sides, i.e., 
both 1/3 < \IL\, \IR\ < 2/3; or one of 1^ or IR has more than 2n/3 bits. In the second case, 
it is easy to see that at least n/3 of the input bits from the side with > 2n/3 input bits will 
be paired with the output bits on the opposite side. In the first case, we average over all the 
n control word values. Let c denote the value of control bits ciogn ...C2C\. Let ^,iC be 1 if x, 
and j/j+c are on the opposite sides, and 0 otherwise. For every output bit yj, there are at least 
n/3 input bits which are on the other side. Thus ^"ro1 £,_c,c > n/3. If we sum it over all the 
output bit positions j, and divide it by the number of permutation group elements n, we find 
that an average group element creates at least n/3 straddled (i,o) pairs. 

By Theorem 1, at least half of these straddled (i, o) pairs are expected to switch. Thus 
there are at least n/6 input bits that switch and whose corresponding output bits are on the 
opposite side. Next step is to show that these n/6 straddled pairs switch most of the area. 

Theorem 2 £e/ /(xi,i2,... ,x„,Ci,C2,... ,c/osn)  =  (j/i,j/2,-• • ,J/n) be a normal transitive 
function.  The switching energy consumed by the switching o/i?(n) (i,o) pairs (x,, ,j/j,) 

(»i3»Via) • • ■ (x<kn' J/J»J is 9iven by Q{n2). 
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PROOF SKETCH: The proof is similar to the one given by Thompson to show that the area of 
a graph with bisection width u is ß(w2). The bisection width of the subgraph spanned by I 
and O is k. We count the contribution to the lengths of the edges of k disjoint paths crossing a 
bisecting line x = a with one jog. Thompson counts the area contribution of the edges crossing 
such a line. D 

We can generalize this result to the circuits where a wire is allowed to switch more than 
once. Then a circuit to compute a normal transitive function could have a bisection width 
I < k < n. Each of the k (."-jes in the bisection will have to multiplex n{n/k). We have to 
preclude the possibility that the chip sorts n/k bits in each group and sends them in that ord^r, 
thus making the long wires switch only once. The following lemma shows that, on average, a 
n/k bit sequence has about n/2k bit alternations. We assume that the sequencing of tl e bits 
in a n/k bits group is oblivious to the value of the input bits. We say that in a bit sequence 
a1,a2,...,a(, there is an alternation at the position j if a, ^ aJ+1 tor 1 < j < I - 1, i.e., 6: 
equals 1 if dj / aJ+1 and 0 otherwise.  The total alternation for a /-bit sequence is given by 

Lemma 2   The average total alternation for a k-bit sequence from the set {0,1}* is (k - l)/2. 

PROOF SKETCH: Let the total alternation summed up over all the bit sequences in {0,1}^ be 
denoted by ,4(^). A{k) is given by the following recurrence. 

Aik) = 2A{k-l) + 2fc-1; A{1) = 0; 

This equation has a solution in A(k) = (k - l)2k~l. Averaged over 2fc k-hit sequences in 
{0,1}*, we get an average total alternation of (Jfc - l)/2. 

By the preceding lemma, each of k edge disjoint paths will switch n{n/k) times.   The 
following theorem shows that most of the area will switch every time. 

Theorem 3 The average switching energy of a normal transitive function computed by a cir- 
cuit of bisection width k is bounded from below by Q{kn + n2/k). 

PROOF SKETCH: The proof to show that n{k2) switching takes place at each time step is 
exactly similar to the proof of Theorem 2. When k is 0(1), just the storage requirements give 
J?(n) - -itching energy. This adds up to i?(A;2 + n) switching energy at each step. Lemma 2 
assures t there will be n{n/k) time steps due to band width limitations. The lower bound 
of n{kn + n2/k) is given by multiplying the lower bounds on area and time steps derived 
above. 

The lower bound on the average switching energy of a normal transitive function derived 
in Theorem 3 attains a minimum of n3/2 when the band width is </n. 

4    Energy Complexity of Transitive Systolic Systems 

In this section, by Transitive Systolic System we will refer to a system 

• that is systolic. 

• which computes a transitive function. 
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There are many versions of what it means for an algorithm to be systolic. We attempt to 
capture most of the commonly accepted characteristics of a systolic system in the following 
discussion. 

1. regular structures: The most distinguishing characteristic of systolic systems is their 
regular structure. This makes them very suitable for VLSI implementations. 

2. few neighbors: Each processing unit has a constant number of neighbors, which is inde- 
pendent of the input size n. 

3. pipeline: These structures are capable of supporting a pipeline of input data at a regular 
pipeline period. Without loss of generality, we assume that at each time unit, a systolic 
system produces an output bit for each output data stream. The bubbles in a stream can 
be accommodated by defining a larger clock tick, within which the system is internally 
introducing these bubbles. Alternatively, one could distinguish between bit systolic and 
word systolic systems. A systolic system is word systolic if it produces a word of output 
at each clock tick. Similarly, a systolic system is bit systolic if it produces a bit of an 
output word at each clock tick. We insist on word systolicity. 

4. distribution of streams: The input and output data streams should be evenly distributed 
around the periphery. This requirement is imposed by our desire to be able to use this 
structure in a larger system with compact routing. In an extreme case, if all the input 
and output data streams were tapped from the same convex side of the system, chances 
are that there will be a pitch mismatch between I/O side of this unit and I/O sides of 
other units overlayed together. 

5. nonzero delay: Each stream has delay at least one in each processor. 

We briefly describe what a transitive function is. We borrow the notation from Vuillemin 
[10]. 

Definition 6 A boolean function f{xi,X2,.. •,xn,ci,C2,... ,Ck) = {yi,y2,-• ■ ,yn) is said to be 
transitive if: 

1. For each value of the control input bits ci,C2,... ,Ck the output vector (yi, j/2> ■ • • il/n) *• 
the permuted input vector (ar^ij,!^),... ,xa(n)), where the permutation g in determined 
by the control bits. 

2. The set of elements g forms a transitive permutation group. 

3. For each pair {i,j) of index positions, 1 < i,j < n, there exists a permutation K, such 
that TT maps t into j, i.e., x{i) = j. 

The main property of transitive functions is that each output bit depends on each input 
bit. Note that this makes transitive functions more restrictive than the functions for which 
each output value depends on each input value. 

A systolic system may not exist for every transitive function. A function could be arbitrarily 
complex and still be transitive. An example is the union of a nonrecursive function and 
shift function, which is not even solvable. But, it still embeds an instance of a transitive 
computation. This result applies to only those transitive functions that are simple enough to 
have a systolic algorithm. 

Before we go any further, we develop some notation. A data stream is said to be an 
input(output) data stream if the flow of data through this stream is into(out of) the system. 
Each input stream is incident on two convex faces of the convex embedding of the system. For 
a stream D, let IF{D) denote the input face and let OF{D) denote the output face. 
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Definition 7 A description of a data stream D, des{D), is a list wopei wi ... pe; w, ... pen wn 

of alternating wire segments and processors, such that wire segment wt-.i is incident into and 
wire segment Wi is incident out of the processor pet. 

Definition 8 ^4n input data stream £), is said to dominate an output data stream D0, denoted 
by D, h D0, if both Dt and D0 are incident on a processor where bits in Di are input to the 
computation of bits of D0. 

Lemma 3 for a transitive systolic function, every input data stream dominates every output 
data stream. 

REMARK 1: The description of a data stream D, des{D) has a processor, wire segment pair 
(pj, Wj), for every output data stream OD, that D dominates. 

Definition 9 The span of an input data stream is defined to be the number of output data 
streams it dominates. 

Lemma 4 In a transitive systolic system, when an input bit is switched, Q{n) switching energy 
is consumed. 

PROOF SKETCH: Let us consider any input data stream, /£),. Let E, be the switching energy 
consumed when the data stream /D, switches. We know from Lemma 3 that /£, dominates 
each output data stream ODj for 1 < ; < m. As we mentioned in Remark 1, this implies that 
des{ID,) has a processor, wire segment pair (p^Wj) for each of the output data streams ODj. 
Thus, des{IDt) has at least m = ß(n) wire segments. 

According to our model, each wire segment has length i?(l). Each wire segment Wk, when 
switched, consumes e^ = /2(1) energy. When the input stream ID, switches, each of the wire 
segments Wk in its description des{IDi) will switch. Thus, £,, the energy consumed when IDX 

switches is ^{Ylwk^dea(lD,)ek)- Since each ek is at least constant and des{IDi) has ß(n) wire 
segments, Ei is f2{n). 

Now we will prove a series of lemmas that lead us to our main theorem. In what follows, n 
is the number of input bits and m is the number of the output bits for the transitive function 
under discussion. 

Lemma 5 For a transitive systolic system, no input data stream can multiplex o{k) input bit 
positions, for a constant c. 

PROOF SKETCH: The proof is based on the fact that for computing any output bit in a 
transitive function, every input bit is required. Each output bit requires n input bits. Thus 
each input data stream should provide one bit at each clock tick. 

The key idea on which the proof of main theorem hinges, is that the area of a transitive 
systolic system is 0{m x n). Since m is 0(n), this means that A is 0{n2). We first show that 
A is n{m x n). 

Lemma 6  The area A of a transitive systolic system is bounded from below by Q[m x n). 

PROOF SKETCH: Notice that in any systolic system, no output bit stream can be multiplexed. 
Otherwise, there will be a constant buildup of information within the system. None of it can 
be discarded, since a transitive function needs it all. By Lemma 4, for a transitive function 
every input stream has a span of Q{m). Thus each input stream induces wire length of fi{m) 
in the system. By Lemma 5, there are at least i7(n) such wires. This proves the result. 
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Now we are ready to show that A is 0{m x n). 

Lemma 7 for transitive systolic functions, the area A of the system embedding is 0(m x n). 

PROOF SKETCH: If a systolic system exists for a function, then an equivalent one can be 
realized as in the schema shown in Figure 1, The size of each processor P is a constant p. If 
it were not, then the system would not be systolic. Since the number of input bits and output 
bits is a constant, there is only a finite number of Boolean functions realizable ^ach of these 
functions can be realized in constant area. This proves the result. 

D 

Theorem 4 For transitive systolic systems, the average energy consumption is of the same 
order as the worst case energy consumption. 

PROOF SKETCH: Let C = (V, W) be the circuit to realize a transitive function / with a systolic 
algorithm. The worst case (state, input) combination can make all of the area switch. Thus 
EW{C) is 0(A). 

For a uniform distribution, each input bit x, to the circuit can switch independently. The 
probability that a bit x,- switches P[x,- switches] = P[x,- goes 0->l] + P[x, goes 1-^0]= 1/2. 
Thus the expected number of input bits switching is n/2. By Lemma 4 each switched input 
bit consumes /?(n) energy. Thus a lower bound on Ea{C) is ß(n2). From Lemmas 6 and 7, 
area A is &{n2). This shows that Ea{C) is n(A) and EW{C) is 0(A). 

In the next section, we demonstrate this result with an example of a multiplier circuit. This 
algorithm is due to Wayne Winder of the VLSI Consortium at the University of Washington. 
This algorithm is of independent interest too, since it achieves the lower bound of n2 on AP2 

for multiplication, as shown by Vuillemin [10]. 

4.1    A Multiplier Example 

This multiplier is based on the basic shift and add paradigm of multiplication. The multiplica- 
tion algorithm that we all learnt in grade school is shown in Figure 2. If instead of writing row 
t shifted left by t - 1 for 1 < t < m, we wrote them all aligned, we will get this multiplication 
scheme. Each cell (t,j) receives a carryin from its north neighbor and a sum bit SJ from its 
northwest neighbor. It sends out the sum of 6, x dj, Sj and the carryin to its southeast neigh- 
bor, and carryout to its south neighbor. The last row is an exception. To get output bits cn/2 
on the right, we have an adder that sums up previous carrys with the sum bits. We can use an 
adder proposed by Brent and Kung [2]. This adder propagates the carry in time 0{logn) and 
with width 0{n) and height 0{logn). When pipelined, the adder has a period of 0(1). Thus 
the whole multiplier has area 0(n2) and it works at a pipeline period of 0(1). Thus its AP2 

is 0(n2). Note that each input data stream has a total wire length equal to /2(n). On average 
half the input bits switch, giving us a an avarage case energy consumption of Q{n2). The area 
of this circuit is 0(n2). The worst case switching energy is bounded by 0(i4). This shows 
that this multiplier indeed consumes the same order of average case and worst case switching 
energy. 
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4.2    CFL Example 

Just to demonstrate that it is not always true, we separate the average and worst case energy 
consumptions of a systolic implementation for recognizing a context free language L = {wwR]l} 
{1{0,1}'}. We refer to the systolic implementation of Guibas, Kung and Thompson [3]. In the 
worst case, a string of the form wwR where w G {0,1}" dominates with an energy complexity 
of n2. In the average case, though, the strings of the form 1{0, l}"-1 dominate, since there are 
22n-l _ 2n of JJ^JJJ compared to 2« of wwR kind. 

xun-l     IDn 

1 1 0 1 

1 0 0 

0 0 0 0 

0 0 0 0 

1 1 0 1 

1 1 0 1 0 

1 

1 

0 

0 

0 

1 

0 

carryln 

Figure 1: The Systolic System Schema carryout 

5    Lower Bounds 
Figure 2: The Multiplication Algorithm 

In this section, we extend the lower bound result of Kissin [4]. She shows that to compute a 1- 
switchable function in depth 0{logn), worst case switching energy of Q{nlogn) must be used. 
The assumption is that the output nodes are placed on a convex border in the embedding. We 
show that if the depth can be relaxed to be a polynomial in n, i.e., d{n) = n£ for 0 < c < 1, then 
areax depth = ,J?(max(n/o0n, n1+e)). Similarly, if the depth is polylog, i.e., d{n) = logkn for 
k>2, then area x depth = Q{nlogkn). These lower bounds hold under the assumptions that 
in an embedding of the circuit C the output nodes are located on a convex border and the fan 
out is limited to two. 

Next, we will define 1-switchable functions. A function / is 1-switchable if there is an input 
bit position on which every output bit depends. A formal definition follows. 

Definition 10 A function f : {0,l}n —► {0,l}m, with m = 0(n), is said to be 1-switchable 
if there exist two input vectors a = XxX? . ..Xk .. .xn and 6 = Zigj ,. .ST*... £„ differing only in 
one bit position, such that 0{n) output bits switch from f(a) to f{b).   , 

Note that the class of transitive functions forms a subset of the class of 1-switchable func- 
tions. Thus all the lower bounds that we derive also apply to transitive functions. 

Our basic problem is to fan out the input bit Xk to 0(n) output bit positions. If we 
restrict the depth for this fan out, then we can place lower bounds on the sum of the lengths 
of the edges in a Cartesian grid embedding. We limit ourselves to the embeddings (underlying 
communication graphs) with fan out of at most 2 for every vertex. Our strategy will be to first 
show that any efficient fan out graph will be in a canonical form, which we call balanced fan 
out graph. Then we show a lower bound on the area of any embedding for this graph, given a 
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certain depth. Note that since we are working with the unit delay model, depth corresponds 
to delay in the given function. A wire can be driven in unit time regardless of its length. 

Definition 11 Let G = {V,E) be a directed, rooted graph. Let VQ £V be the designated input 
node and Vo C V be a designated set of output nodes Then F = {V,E,vo,Vo) is said to be a 
fan out graph if there exists a directed path in G from VQ to each Vk £ VQ. 

We limit ourselves to only those embeddings in which the output nodes are located at a 
convex border. Without loss of generality, we can assume that all the output nodes are located 
along a straight line. This blows up the area at most by a constant factor. Thus we restrict 
the definition of a fan out graph to get an appropriate class of graphs which admit such convex 
embeddings. In a digraph G = iV,E) let u be the predecessor of u, denoted by pred{v), if the 
edge (ti,t?) 6 E. In this case, v is called «'s successor, denoted by succ{u). 

Definition 12 A fan out graph F = {V,E,vo,Vo) is said to be a convex fan out graph if for 
every v £Vo, its successor also is an output node, succ{v) G VQ. In this case, all the nodes in 
V - {{VQ} U VQ) are called internai nodes. 

Definition 13 A convex fan out graph F = {V,E,VQ,VO) is said to be optimal if there is no 
other convex fan out graph from VQ to VQ with depth less than equal to depth{F), and with an 
embedding with less area than minimum area embedding of F. 

REMARK 2: Any optimal convex fan out graph will be acyclic. Back edges do not fan out 
into a new node. There is a convex fan out graph with all the back edges removed, which has 
the same order of depth but less switching energy. Now on, we will assume that our canonical 
form graphs, balanced fan out graphs, are acyclic. 

Definition 14 A linear chain consists of an alternating node,edge list, u, e, i>,+i... Vj-i ej_i Vj, 
such that Cfe = (rjt, Vk+i), for t < k < j - I, and every vi, in the list has at most one outgoing 
edge. A linear chain is maximal if pred{vi) has two outgoing edges and either Vj is a leaf or 
succ{vj) has two outgoing edges. Node v^ is called the leader of the chain. The length of the 
chain is the number of nodes in its list. 

Lemma 8 An optimal convex fan out graph does not have any maximal linear chains consisting 
of internal nodes. 

PROOF SKETCH: By contradiction. Acume that F = {V,E,VQ,VO) is optimal and it has a 
linear chain, v, e,- Vi+i... v,+/... Ct+ife-i vi+k (note that if fj+z+i is an output node, then no 
node vq,i < q < i + l can be an output node and no node ur,t + / + 1 < r < t + fc can be an 
internal node, since F is a convex fan out graph). We can get a new convex fan out graph, 
F', by deleting nodes u,- through u,+/ and edges ej_i through e,+/ and by inserting the edge 
(pred(v,),r,+/+i). Note that F' has depth at most equal to the depth of F and its switching 
energy has been reduced by at least / + 1. 

D 

Figure 3: Canonical Form Embedding 

NOTE: A linear chain consisting of only output nodes is called a terminal chain. 
Thus , an optimal convex fan out graph will consist of a binary tree stage whose leaves each 
feed a linear chain, as shown in Figure 3. It is easy to see that, for optimality, the binary tree 
must be a balanced binary tree. It will be a complete binary tree if the number of leaves is an 
integral power of two. 
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Definition 15 A set of linear chains is balanced if every chain has length k or k+ I for some 
integer k. 

Lemma 9  for an optimal convex fan out graph, the set of it' terminal chains is balanced. 

This defines our family of acceptable fan out graphs.  A fan out graph F is said to be a 
balanced fan out graph if it is a convex acyclic fan out graph with balanced terminal chains. 

Theorem 5 Let f : {0,l}n —► {0, l}m be a 1-switchable function. Let C{V,W) be a circuit 
to compute f. For any convex embedding of C within depth d{n), log2n < d{n) < n£, with 
0 < e < 1, the following holds.  The EW{C) x d{n) is f2{max{nlogn, nd{n)). 

PROOF SKETCH: The proof relies on the result of Brent and Kung on the minimum area 
required for a convex embedding of a binary tree [l]. The terminal linear chains along a line 
contribute ü{n) to the sum of edge lengths, and consequently to area and switching energy. 
The second factor ofn/d{n) x log{n/d{n)) is from the balanced binary tree embedding. 

a 
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Energy Complexity and Delay Comparison of 
Dynamic and Static PLA Design Styles 

AKHILESH TYAGI 

Department of Computer Science 
University of Washington 
Seattle, Washington 

ABSTRACT 

In this paper, we compare the energy complexities of the static and dynamic 
design styles for a PLA. We show that the average energy consumption of a dy- 
namic PLA exceeds that of a static PLA. We also show that, on average, a dynamic 
PLA is faster than a static PLA. This is consistent with intuition since one can 
trade power for delay. In order to prove these results, we deal with a ver^ general 
class of PLAs. If we are allowed to restrict this class, we can do more. In particu- 
lar, we show that the choice of a design style for a data path control PLA depends 
on the degree of parallelism of the data path. Our techniques are general enough 
to be applicable to most of the application domains. We believe that our results 
give a mathematical justification (within the limitations of our model) for picking 
one design style over the other for a given application domain. 

1     Overview 

Due to its regularity, a PLA is probably the most popular structure for 
the implementation of random logic. Its simplicity also makes it the ideal 

medium for automating the layout process for a random logic expression. 
Recently, the PLA has been the structure of choice for the control path 
design in microprocessors, as in QuarterHorse [5], Mosaic [9], and PP4 [10], 
primarily due to the ease of reconfiguring it. Thus, a significant fraction of 
silicon area laid out today, is devoted to PLA design. It is no surprise, then, 
that a lot of effort has been devoted to finding ways of optimizing a PLA 
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at the description level (e.g. logic minimization [2]) as well as at layout 
level {e.g. folding techniques [4], [3]). However, to the best of the author's 
knowledge, there have been no attempts at mathematically analyzing the 
energy consumption or the delay of this structure. 

With ever increasing demand for performance on the single chip VLSI 
architectures, even a CMOS design needs to be energy conscious. The power 
in the CMOS technology is a direct function of its clock frequency. The 
high performance architectures with the integration approaching submicron 
levels are reaching a point where the power dissipation will turn out to be 
a problem to contend with. Paying attention to the switching complexity 
of a PLA is specially fruitful, since it is the control path in an architecture 
which does most of the switching. 

In Section 2 we define a model based on energy consumption. We also 
refine the original VLSI model [11] to take into account the mobility dif- 
ferences between p-type and n-type channels and the strength of a device 
driving a node, for the delay calculations. Then we compare two design 
styles under the energy complexity measure in this model for a general 
class of PLAs and the datapath control PLAs. In the last section we com- 
pare the delay in the two design styles. 

2    Model 

Our energy model is the same as the one originally outlined by Kissin [8]. 
The VLSI model is the commonly accepted one, proposed by Thompson 
[11]. A layout can be viewed as an embedding of the communication graph 
in a Cartesian grid. Each grid point can either have a processor or a 
wire passing through. A wire can not go through a grid point unless it 
is a terminal of the processor at that grid point. Wires have unit width 
and bandwidth and processors have unit area. The initial data values are 
localized to some constant area, to preclude an encoding of the results. 

2.1     Energy Model 

Let u be the unit switching energy defined to be the energy spent when a 
wire of unit length switches (changes state either from a 1 -+ 0 or from a 
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0 —► 1). Note that a minimum size transistor also consumes 0{u) energy 
when it changes state. We will say that a wire of length / takes 0{l) energy 

when it switches. It is implicit here that u is a technology dependent 
constant. 

We do not account for the switching energy consumed by the transistors. 
This is in accordance with the widely held belief that the wires take up 

most of the area in a VLSI layout. In asymptotics, the wires dominate the 

complexity of even a regular structure like a ^LA. Tn a static design, it 

may seem that when a pull-up is fighting against on or more pull-downs, 

a considerable amount of energy may be consumed, thus violating this 

assumption. But, in a static design the pull-up transistors are so weak that 

the energy consumed by the contention of a pull-up and a pull-down device 
is a very small fraction of the switching energy of a long minterm1 wire in 

poly layer. The switching energy of a wire is proportional to its length in 
the layout. 

A PLA satisfies the Uniswitch Model (USM), as defined in Kissin [8]. 
In this model, any wire in an acyclic circuit can switch at most once, for 
unpipelined computation. A PLA does not switch any wire more than once 

in response to a clock transition, since the state feedback paths (to build a 
finite state machine) are clocked. A symmetric notioti L ihat of Multiswitch 
Model. Kissin shows some upper bounds on the switching energy of certain 
circuits in the Multiswitch model. 

Assumptions: 

1. Each node in the PLA depends on an input, i.e., for each node, a pair 
of inputs exists which makes that node switch. 

2. Inputs are synchronous. In other words, they are presented at the 
input ports, simultaneously. The inputs in a PLA have to be clocked, 
for it to work as a component of a larger system. 

We can abstract a PLA circuit as a graph, C{V, W), where V is the set 
of nodes and W is the set of edges or wires mVxV. 

although the correct term is implicant, we will continue to use minterm due to its 
wide acceptability 
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Definition 1 A PLA circuit, C{V,V/), is said to be in state s:VuW —► {0,1}, 
if s is consistent according to following conditions. 

• For an input node x,, «(»,) is consistent with the input XQXI ... X^J . For an input 
wire w = (x,-,y), s{w) must equal s(xt). 

» iVon input nodes and edges hcve the values consistent with the input values and the 
labels of the nodes. For example, for a node, v, labelled by A with state of input 
wires s(wi) = l,s{wi) = 1, s{v) must equal 1. 

Note that the state of a PLA is completely specified by the value of its 
inputs. Over a complete cycle of operation, it defines the final values of the 
minterms and the outputs. 

Definition 2 A wire w (node v) is said to have switched from state SQ to 
state Si ifso{w) ^ Si{w) (s0(v) ^ Si(v)). 

We define a measure of energy consumption for a circuit. When a circuit 
C is subjected to an input x, let wire Wi switch fc,- times Kefore the circuit 
is settled. Let /, be the length of a wire u;,- in the circuit C's embedding in 
a grid. Then the energy consumption for circuit C, Ew{C,3,x) in state s 

with x as the input is defined to be u x E^gw *• x '.• For the Uniswitch 
model ki < 1. We will distinguish between worst case energy consumption 
and average case energy consumption. 

Definition 3 The worst case enei^y consumption for a circuit C, EW(C), 
is defined to be maxSif.Ew(C, >s, x), where the maximum is taken over all 
(state, input vector) pairs. 

We similarly define the . 'erage case energy consumption. Note again 
that for a PLA, an input assignment z defines the state of the circuit 
completely. 

Definition 4 The average case energy consumption for a circuit C is de- 

fined to be its energy consumption averaged over all initial states and all 

input vectors. Thus Ea{C) = Z,,3Ew{C,s,x)/22n
) where n is the number 

of input bits. 

M^M'M^^^^^^ ".Vl-.VA ',\-A.--1 -.VVf'O ■ 



For further details of this model, the reader is referred to Kissin's papers 
[7], [8]. 

We compare only the total amount of switching between two design 
styles, thus separating the inherent complexity issue from the layout issues. 
The clever layout techniques likp f ing, to reduce the wire lengths could 
very well be applied across both esign styles. 

We assume that the domain of PLAs we are considering has the prop- 
erty that, given 5. is th- current state, the next state could be any of the 2n 

states with equal probability. Of course, in a real PLA certain state tran- 
sitions are more heavily favored than the others. We do not have sufficient 
information about a PLA personality to assign nonuniform weights to the 
state transitions. A more complicated modelLng could attempt to look at 
it as a Markov process. Alternatively, one could model a PLA for a certain 
domain of applications. In Section 4, we model a control PLA for a data 
path. We have also assumed that no two states share a set of minterms, in 
other words, there are no don't care bits in the and plane. If there are don't 
care bits in the and plane, it just reduces the state space size, and hence 
the amount of total switching. 

2.2     Delay Model 

For our puposes, we can work with any of the synchronous, capacitive, or 
diffusion model for the delay calculation as described in Bilardi, Pracchi, 
Preparata [l]. However, we have to refine our model to include, in our 
delay calculations, the strength and the type of a driver driving a node. 
The following description justifies the need for this refinement. 

Dynamic Style: An essential difference between static and dynamic PLA 
design styles is that the dynamic style assigns the pull-up and pull- 
down phases for the same node to separate phases of a clock signal. 
Thus, a node is never pulled down and up, simultaneously. Let the 
time a minimum sized n-channel driver takes to pull down a unit area 
metal wire, be denoted by u. We will assume that the time it takes 
a minimum sized n-channel driver to discharge a minterm wire in a 
given PLA instance is given by i/, since the scale factor consisting of 
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minterm layer capacitance and area is same for both tho styles. Thus 
for the sake of comparison, our results will still be valid. We will not 
charge any time for a 0 —> 1 transition in a dynamic design, since the 
precharge phase can be made very very small compared to the evaluate 
phase. If it is a 1 —» 0 transition, then the strength of this transition 
is defined to be the number, k, of n-channel devices pulling it down. 
This transition is charged a delay of u/k. In the SPICE experiments 
we performed on some real PLAs, this relationship seems to hold. 

Static Style: In a static design, when a node is to be pulled down to 
ground, there is a weak p-channel device fighting against one or 
more n-channel devices. The p-channel device is designed to be weak 
enough so that it can be overpowered even by a minimum sized n- 
channel device. Typically, the channel length ratio for a p-channel 
device to a n-channel device is about two, in a static PLA design 
(Note that this ratio is required in order to have reasonable noise 
immunity, as shown in the text book by Weste and Eshraghian [12] 
[page 54]). In the SPICE experiments conducted by the author, the 
time a n-channei device took to discharge a node without a weak p- 
channel device pulling it up, was almost the same as the time in a 
static setup. Thus, we assume that a minimum sized n-type device 
takes time u to pull down a minterm node even in the static design 
style. The time it takes for a p-channel device to pull up the same 
node is different due to lower mobility of a p-channel. Let pr be the 

. ratio of n-channel mobility to p-channel mobility, i.e., pr  = Pn/Pp- 
Let us denote the time, pri/, a minimum sized p-channel transistor 
takes to pull up a minterm by up. Then a p-channel device with a 
channel width ratio of r, will take time rUp. This case, when a weak 
p-type pull.° up a node, shows the main difference between two design 
styles. As we previously mentioned, this time equals rpri/, where r 
here is about two, and pr in a typical process today varies between 
two and three. Thus a 0 —> 1 transitions takes ~ 5 times as long as a 

* slowest 1 —► 0 (strength 1, when only one n-channel device is on). 

To summarize the delay estimation, there is a delay of u/k, when a node 
is pulled down with strength k. There is a delay of ~ 5i/, when a node is 
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pulled up in a static setup. We allow a node to be pulled up with zero delay 
in a dynamic setup. 

3    Energy Complexity 

In what follows, m is the number of minterms, n is the number of inputs, 
and, / is the number of outputs. Thus the total area of a PLA under either 
implementation, is 0{m (n+/)). Note that the input switching is uniform to 
both the design styles, however the way the minterms and the outputs are 
evaluated is very different. We demonstrate our results only for minterm 
evaluation. Also notice that the energy consumption for both the NAND 
and NOR dynamic styles is equal. The amount of charge to be placed on 
a wire or to be carried away from a wire remains the same. The delay 
through a NAND style PLA, of course, is longer than the delay through 
a NOR style PLA. The same techniques apply to the output evaluation 
and consequently tilt the balance in the same direction. We develop some 
notation before we go any further. Let 5 be the set of minterms. More 
specifically, S has elements in the range [0,m - 1]. 

Definition 5 An onset for a state 5„ denoted by On(/,51) C 5 w the set 
of minterms that are active (on) in the state Si for a PLA for the function 
f- 

Let ~ On(/,5,) denote the bitwise complement of On(f,Si). We will think 
of On{f,Si) as a bit vector of length m. Thus an (u)6 denotes the bitwise 
'A(V)' of a and h. The cardinality of a bit vector a, |a| is the number of bit 
positions with entry 1 in a. 

We now analyze the switching of minterms in the static and dynamic 
design styles. 

3.1    Static Design Style 

Let us consider the switching for a transition from a previous state, sp, to a 
current state, 3C. There are two components to switching in a static design. 
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1. The previous state component, which requires that the minterms that 
were on in the previous state and are o^fin the current state be turned 
off. The number of such minterms is |(On(/,5p) n (~ On(f,sc)))\. 

2. The current state component, which requires that the minterms that 
were o^in the previous state and are on in the current state be turned 
on. The number of such minterms is |((~ On{f,sp)) fl On{f,sc))\. 

Thus, the total switching, Sw{sp,sc), from the state sp to sc is given 
by: 

Sw{sp,sc) =  |(On(/,5p)n(~C>n(/,5c)))| + |((~On(/,Sp))nC)n(/,5c))|    (1) 

In order to maximize Sw{sp,sc), for each pair {sp,sc), On{f,sc) must 
equal ~ On(/, sp). In that case, all of the m minterms will switch in going 
from any state sp to any other state sc. It is easy to verify that to attain 
such a condition m should be exponentially large in n. In such a situation, 
a PLA is not a structure of choice. A ROM would be the structure to use. 
Thus, we rule out the complete switching for a reasonable PLA structure. 
In practice, PLAs are designed with m being equal to k n, where ifc is a very 
small constant. 

We start with the assumption that m equals n. We will generalize it as 
we go on. The expression in Equation 1 is symmetric with respect to the 
pair (.Sp, sc). That suggests that we could count the overlaps between all the 
subsets of 5 and double it to get the switching totalled over all pairs (s,-, Sj). 
This is almost true. There is another additional term due to self overlap. 
Note that the total number of unordered pairs (5,-, Sj) is p = 2n (2n - 1) /2. 

Lemma 1 The average switching for a static PLA design with m — n is 
given by n2n~1 /(2n - 1). 

PROOF: Each column in the truth table for n variables has 2n"1 1's. Thus, 
each column contributes (2n-1 - l)(2n-1)/2 to the total overlap. Thus total 
overlap is n(2n-1 - l)(2n-1)/2. There is another term of n 2n-1 contributed 
by the overlap of complement pairs. Thus the total switching is 2n(2""1 - 
l)(2,1-1)/2 + n2n-1. This equals n22n-2. The average switching then is 
n22n-2 / 2n-1 (2n - 1). This number tends to n/2 in the limit. 
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We illustrate the previous lemma by an example. Consider the following 
table of minterm values for m = 2. 

mo 0 0 
mi 0 1 
m2 1 0 
m3 1 1 

Consider the transitions from mo to any other state, ma is mo's com- 
plement. The overlap between mo and m,- for 1 < t < 3 gives the total 
switching with initial state mo and next state m^ for 0 < j < 2. These 
cases are taken care of by the term (2ri-1 - l)(2n-1)/2. If the next state 
is the complement of the current state then the switching just equals the 
number of ones in the current state vector. Summed over each possible 
current state this overlap equals the number of ones in the table, which is 
given by n2n~1. 

The next generalization comes from considering the case when it > 
1.  For each one of 2n input states, we need to assign a distinct minterm 
from a set of 2m > 2n minterms, ( We assume that there is no sharing 
of minterms).  Let M be the set of the 2n minterms assigned.  There are 
two cases, one when M is closed under bitwise complement, and two, when 
it is not.  The average switching for case one seems to be lower than for 
the case two, because of the symmetry of the expression in Equation 1. 
Let us consider the first case. There are 2n-1 of complemented pairs in M. 
Intuitively, it seems like that given a large number 2m of minterms to choose 
from, we could intelligently pick 2n minterms to lower the switching below 
Lemma 1 level.   But as the following theorem shows, the switching only 
gets worst. The intuitive reasoning behind this phenomenon is as follows. 
Each complement pair has m I's between two of them.   There are 2n~1 

such pairs.  Thus the total number of I's in the elements of M is m2n"1. 
The total number of bits in these entries is m 2n. There are exactly half 1 
entries and half 0 entries. Thus, the expected Hamming distance between 
any two elements of M is m/2. We state and prove the theorem next. 
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Theorem 1 Let the number of minteTms m — kn with k > \. Let the set 
of assigned minterms M he closed under bitwise complement. Then the av- 
erage switching between any two states, Sw(si,Sj), is given bym2n~1 /(2n- 
1). 

PROOF: The proof is similar to the one given for Lemma 1. Notice that 
the overlap between two complement pairs is exactly m. There are 2n~1 

complement pairs. Thus, the total number of distinct unordered pairs of 
complement pairs is given by (2n"1 - l)(2"~1)/2. In addition, each pair has 
a self overlap of m. Thus, the total switching is 2m(2n"1 - l)(2n~1)/2 + 
m2n"1. Dividing it by 2n~1(2n - 1) gives the average switching to be 
m2n-1/(2n - l). Note that the average switching tends to m/2 in the 
limit. 

D 

Now we consider the second case when the set M is not closed under 
complement. This gives rise to a range for the average switching depending 
on the number of unpaired minterms, 2r, in M. 

Theorem 2 Let m = kn with k > 1. Let there be 2r unpaired minterms 
in M.  Then the average switching Sw{si, Sj) is given by 

m(22n-2-r2)       , , /   2m-2    \     4r2 - 2r 
+ (m - 1) ' ' 

2n-i (2n — 1) \2m~1 — 1 / 2n~1(2n — 1) ' 

PROOF: We have to consider the interactions between three groups of the 
minterms belonging to M. Let set A consist of the minterms that have 
their complements in M. The cardinality of A is 2n - 2r. Let 2r unpaired 
minterms belong to set B. Let the bitwise complements of 2r minterms in 
B belong to set C. There are three terms in the expression for the total 
switching. 

. First one is due to internal overlap between the elements of A. This 
analysis is similar to the one in the proof of Theorem 1. This term 
contributes m( (2n~1 - r)(2n~1 - r - 1)). There is a self overlap term 
ofm(2n-1 -r). 

10 
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• This term is due to the interaction between set A and the sets B 
and C, due to the symmetry of Expression 1. Its contribution is 
(2n-1 - r)2r. 

• This term approximates the contribution of the interaction of sets B 
and C.  Note that for each pair of bit vectors u,v e B, we need to 
calculate \ün ~ v\ + \ ~ Ünv\. Also Notice that this quantity equals 
exactly the number of bit positions t? and v differ in.   This is the 
Hamming distance of u and v, denoted by h{u, v). Thus, this term's 
contribution to the total switching is if   =   Eu.veflM«^), which is 
the Hamming distance of the set B. If the pairs (u, v) and (v, u) are 
counted as distinct pairs, then H is known as the ordered Hamming 
distance of B, otherwise it is the unordered Hamming distance. We 
can not really estimate H, the Hamming distance of a set for an 
arbitrary set B.    However, since we are interested in the average 
behavior, we can calculate the average Hamming distance of a set 
picked from a given collection of sets. In this case, all the sets in this 
collection must not be closed under complement.   The largest such 
collection consists of lexicographically first 2m-1 m-bit vectors, from 
the complete enumeration of m-bit vectors, i.e., the set {0 {0, l}m-1}. 

First of all, note that the Hamming distance of a set taken over all 
ordered pairs {u, v) (Ordered Hamming Distance) is exactly twice the 
Hamming distance taken over all unordered pairs (Unordered Ham- 
ming Distance), due to symmetry of the relation n. For a given set, 
calculating its ordered Hamming distance is much easier than cal- 
culating its unordered Hamming distance.   For each bit position, a 
bit vector u differs from 2m - 1 vectors. Thus, the ordered Hamming 
distance of the set of 2Tn distinct m-bit vectors is m2m~12m and its un- 
ordered Hamming distance is m2m-12m/2. We are interested in the 
unordered Hamming distance of lexicographically first 2m-1 vectors 
out of 2m distinct m-bit vectors.  Note that the first column entries 
for all of 2m-1 vectors is zero.  Thus the first column does not con- 
tribute anything to the Hamming distance of this set. The remaining 
columns contribute exactly as much as the Hamming distance of the 
complete set of (m- l)-bit vectors. Thus the total Hamming distance 
we are looking for is given by (m - l)22m-4.   It has to be averaged 

11 
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over 2m 2(2rn 1 - 1) pairs. This gives us an average overlap of 

(m - l)2m-2 

(2m-1-l)   ' 

Thus, the total contribution of this term is 

(m - l)2m-2(2r)(2r - 1) 
(2«-i _ i) 

All the three terms conibined and averaged over 2n"1(2,l - 1) pairs give 
an average switching equal to 

m(22n-2-r2) /    2m-2    \     4r2 - 2r 
2»-i (2« - 1)   + (m ■" ^ ^m-i-ij 2n-1(2" - 1) " 

The first term 
m{22n-2 -r1) 
2n-i (2^ - 1) 

dominates as 2r/2n tends to zero, and the average switching tends to m/2. 
As the ratio of unpaired minterms rises, the second term dominates in the 
average switching expression. Thus, for 2r/2n tending to 1, the second term 

/    2m-2    \     4r2-2r 
(m-1) 

2m-i _ ij 2"-i(2n - 1) 

tends to 
om-l 

(m — 1)-—■ ~ m . v /2m-1 - 1 

Thus, the average switching is a monotonic nonlinear function of 2r/2n 

with its minimum at m/2 and the maximun* at ~ m. 

12 
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3.2    Dynamic Design Style 

The general expression for the switching, Sw{sp,sc), is different in the 
precharged logic. In this expression, there is no coupling between two 
states Sp and sc. Once again, the two components in this case are: 

1. Precharging the minterms that were discharged in the previous state. 
This number is m - \On(f, sp)\. 

2. Discharging the minterms that are not active in the current state. 
This number is m - |On(/,*e)|. 

Thus, the expression for total switching in the dynamic logic case is 
given by: 

Sw{Sp.Sc) = 2m - \Onif,sp)\ - \On(f,sc)\ (2) 

Notice that the worst case switching in this case could be almost as 
large as 2m, while in the static case the worst case switching is limited to 
m. 

Let us consider the case when m equals n. 

Lemma 2  The average switching for a dynamic PLA design with m = n 
is n. 

PROOF: This time, we have tc sum \On{f^p)\ + \ün{f, jc)j over all uu 
ordered pairs 0P, s^ Each row is counted 2n - 1 times. This sum taken 
over all the rows in the truth table equals 2n - 1 x (total number of 1 's in 
the truth table). Dividing it by the number of unordered state pairs gives 
n 2n~1(2n - 1) / 2n-,(2n - 1), which equals n. According to Equation 2, the 
average switching is this number subtracted from 2n, which is n. 

D 

Contrast this with the average switching for the static case which is n/2 
(in the limit). Again, the reason for that is the independence of two states 
in the dynamic case.   In other words, a dynamic design has no memory. 
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The current state sc does not remember, and hence does not benefit from, 
anything about the previous state, sp. 

Let us consider the case when m = kn for k > 1. Once again, the first 
case we consider is when M is closed under complement. 

Theorem 3 Lei the number of minterms m = kn with k > 1. Let the 
set of assigned minterms M be closed under bitwise complement. Then the 
average switching between any two states, Sw(3i,3j), is m. 

PROOF: Once again, each row is counted 2n - 1 times. Each pair of com- 
plemented minterms contributes m I's to the truth table. Thus the total 
number of I's in the truth table is m 2r,"1(2n - 1). This term averaged over 
all unordered state pairs gives m. Thus, the average switching equals m. 

In the second case, the average switching turns out to be m, again. 

Theorem 4 Let there be 2r unpaired minterms in M. Then the average 
switching Sw{si,Sj) is given by m. 

PROOF: The number of complement pairs is given by 2n"1 - r. To count 
the number of I's in the unpaired 2r minterms, we make the assumption 
that the number of I's in a minterm is equal to the expected number of 
I's in a minterm. Since, exactly half the entries in a truth table are 1, this 
expected number is m/2. Hence, the sum \On{f,sp)\ + |On(/, sc)| equals 
(2n - l)((2n-1 - r)k + (2rm/2)). This leads to an average switching of m. 

4    Data Path PLA 

In the preceding discussion, we considered the PLAs that have the complete 
sets of m-bit vectors as the minterm set. We also assumed that from a given 
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State, it was equally likely to go to any other state in the next transition. 
Given all these assumptions, we derived some general average case results. 
Can we do better if we have more information about the domain of PLAs 
we analyze? We answer this question with regard to a very interesting and 
important class of PLAs, the data path control PLAs. We believe that 
most of the PLAs designed today are used as finite state machines (FSM). 

To be able to get a handle on the structure of the minterm set M, we 
will make some simplifying assumptions about the behavior of the data 
path control FSMs. Note that it does not have to be a data path control 
PLA. Even for most other control applications, the following assumptions 
hold. 

1. A data path consists of many components like a shifter, ALU, regis- 
ter file and PC. Each such component has a cluster of control lines. 
When a component is logically activated, all the control lines associ- 
ated with it become active over a macrocycle of the FSM. There are 
smaller microcycles, probably a clock cycle, which define the gran- 
ularity of this cluster of control lines in more detail. This leads to 
the assumption that there is exactly one minterm which is associated 
with a cluster of control hues of one data path component. Note that 
this leads to an underestimation of the total switching. 

2. Assume that the lines in a cluster are all active high. This condition 
can always be achieved by providing for a proper number of inversions 
at the data path end. 

3. For the time being, we are ignoring the state counting process, which 
is the heart of a FSM. Later we will refine our model, and account 
for the energy required by the counting. Note that we still have some 
inaccuracy in our model due to the clustering of all the minterms for 
a data path component into one minterm. With each state transition 
in the state counting, only a subset of the cluster of control lines for 
a data path component switches. However, this information is too 
domain specific to allow for a general model. 

Observe that due to the assumptions above, this minterm set has some 
nice properties.   For any two minterms u and v, \u — v\   <  ki and \v — 
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"I < h, for some constants kuk2 depending on the FSM. Let k equal 
mas(&i,&a). This means that at most k new components can be activated 
and at most k currently active components can be deactivated in going to 
a next state. Note that k is, in a rough sense, the degree of parallelism or 
pipelining of the given data path. 

In the case of a static design, going from state 5, to state Sj, on average 
k minterms will be turned off and k other minterms will be turned on. 
Thus, the average switching will be 2k. 

On the other hand, for a dynamic design the average switching equals 
2m - 2x (average size of an onset). Assuming that A: is a very good approx- 
imation to the onset size, the average switching here is given by 2m-2k-2c 
for a very small c. 

We could define p = k/m to be the degree of utilization / parallelism 
for a FSM. Then, according to our previous discussion, a high value of p 
seems to favor the dynamic design, while a low value of p favors the static 
design style. 

State Counting: As we mentioned earlier, state counting is an essential 
activity associated with a FSM. Typically, there is n microprogram for 
activating a data path unit consisting of several mi cycles. For example, 
the first step in using an ALU in a dual bus architecti ? might be latching in 
the two operands from two buses. The current trend in Reduced Instruction 
[6] architectures seems to be to keep the number of microcycles, t, the 
same for each data unit. This, in turn, leads to uniform length machine 
instructions. In any case, we can assume that activating each data unit 
involves counting upto f, where t can be taken to be maximum of all data 
unit microprogram lengths. Due to the binary logic design, t will most 
likely be an integral power of 2. We now analyze the switching due to 
counting. 

There are h = \logt] output bits to count upto t.   We assume the 
following sum of products form for the output bits of the state counter. 

Xi{tn+l)   =   Xi(tn)xi-i{tn)...X1{tn) + Xiit^Xi-iitn) + ... + a:.(*„)äi(*n)     (3) 

for all z, 1  < i < n.    The first product in this expression asserts the 
condition for toggling x, from 0 to 1, that x,- is 0 and every other lower bit 

16 

S&^^i^fr^^ 



is 1. Remaining terms give conditions for retaining x, at 1, once it is 1. Note 
that for the zth output bit, x,, there are t minterms in this expression. Also 
notice that the set of minterms for x,- is disjoint from the set of minterms 
for Xj for i ^ j. 

Note that we could have worked with the Gray code counting rather 
than the lexicographic counting thus switching only one bit in going to the 
next state. However, as the reader can verify, it does not change the relative 
switching of two design styles. 

In a static design, the least significant bit, Xi, toggles t times, X2 toggles 
t/2 times, and x,- toggles i/2,"1 times. We state the result for a static design 
as a theorem. 

Theorem 5 Let a static design PLA, designed with the logic expression 
stated above, count upto t. The total switching in counting from 0 to t is 
given by t log t. 

PROOF: Let h equal \logt]. We refer to the complete enumeration of h-hit 
vectors. Some observations about this table are as follows. Each of the h 
columns has t/2 O's and t/2 Vs. In the ith row (for 1 < i < h), there are 
t/2i c\usteiiof2^-^ Vs. 

We analyze the switching due to a 1-cluster in the ith column. Note that 
the first term in the R.H.S. of the Equation 3 is on only for the duration 
of the first 1 in the cluster. At that time all the other terms for x.- are off. 
The (i - l)st column determines when the second term for x,- is on. x,- is 
1 everywhere in the l-cluster. Thus for each 0-run in the i - ith. column, 
{j + l)st term in Equation 3 stays on. Thus it is the number of 0-runs in 
the section of the {i - j)th. column induced by this l-cluster (restricted to 
this 1-cluster's rows), that determines the switching of {j + l)st term due 
to this l-cluster. Summing this over 1 < ;' < i - 1 gives the switching due 
to one l-cluster in the ith column, Switch{i) = 2 + 2 + 4 + ...-|- 2i~1. 
This series sums up to 2*. Since the number of l-clusters is t/2i, the total 
switching due to x,- is {t/2i){2i), which equals t. Thus the total switching 
for counting is given by i log t. 

a 
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How much switching energy do we need to count in a dynamic logic 
design? The answer is given by the following theorem. 

Theorem 6 Let a dynamic design PLA, designed with the hgic expression 
in the Equation 3 above, count upto t. The total switching in counting from 
0 to t is given by ~  t log2 t. 

1 „v-OF: Each zero in a column contributes 2 to the total switching, 1 for 
prechrge and 1 for evaluate. Each of the h = logt columns has t/2 zeros. 
The switching due to zeros is given hy t{l+2 + 3 + ... + h), which equals 
i log t{log t + l)/2. It turns out that the switching due to 1's is of ehe same 
order. 

Let us estimate the switching due to one l-cluster in the ith. column. 
Note that the first term from the R.H.S. of the Equation 3 stays on only for 
the first 1 of the l-cluster. Thus, every other time it is precharged and then 
discharged. The total switching of this term is given by 2(2i"1 - 1), where 
2'" is the size of a l-cluster. Every other term switches twice (precharge 
and discharge) for each zero in columns i - 1 through 1. This switching 
equals (» - l)^'-2). The total switching due to 1's is given by 

togt   j 

E ^ - 2) + (« - 1)2'-1] . 

This sum simplifies to the expression 

- t log2t . 
log2t + ologt 2 
— —- — 2 -f  — 

4 t 

In most of the cases, the number of microcycles for any data unit will 
not exceed 32. With t = 32, the expression for static switching evaluates to 
160 and it is 738 for dynamic switching. Thus even for the range of practical 
operation, the switching due to counting can change the balance in favor of 
static style, where dynamic style would otherwise have been a clear winner. 
The :otal switching with counting is given by following corollaries. 
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Corollary 1 The average switching for a data path FSM designed in the 
static style is given by (^ + k2)(tlogt)f where ku k2 and t are as defined 
above. 

Corollary 2 The average switching for a data path FSM designed in the 
dynamic style is given by (2m - h - k2){t{{logt{logt+ l)/2) + {{logH + 
3logt)/2 - 2 + 2/t))), where m, k1, £2 and t are as defined above. 

5    Delay Analysis 

Based on the assumption that the power x delay product remains constant, 
we expect a dynamic PLA to be faster than a static PLA. We show that it 
is indeed the case, for an average PLA. We explain later, what is meant by 
an average instance of a PLA. 

Note that we are comparing the intrinsic differences between two design 
styles. The delay advantage gained by applying optimization techniques 
like folding is achievable in both the design styles. We assume that all the 
minterm lines have the same length in both the static and dynamic layouts, 
and they are routed in the same layer. In other words, all the minterms 
have the same capacitance and resistance. This assumption is valid for a 
PLA that has not gone through any layout optimizations like folding. We 
assume that the above mentioned conditions are valid for the output lines, 
as well. The techniques required to compare the output lines delay will be 
exactly the same as the ones used for comparing the minterm delay. Thus, 
we will demonstrate our results by minterm delay analysis. 

It is clear from the delay model discussion that 0-^1 transitions are 
prohibitively expensive in a static design, while they come for free in a 
dynamic design. Each 0 -» 1 transition takes ~ 5u delay, while a strength k 
1 -> 0 transition costs only u/k. We will show that an average PLA instance 
has a lot of 0 -+ 1 transitions, hence proving our claim. The following 
assumptions informally define, what we mean by an average instance of a 
PLA. We assume that m equals n. Hence the minterm onsets come from 
the set {0, l}n. We also assume 
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1. that there is no sharing of minterms, i. e., no two inputs have the same 
minterm onset. 

2. from a given input vector i, it is equally likely to go to any other 
input vector y, where f, y € {0, l}n. 

Theorem 7 A static PLA takes c times as long an asymptotic average 
time as a dynamic PLA, to evaluate its 'and plane', where c equals ~ 5. 

PROOF: We count the number of input pairs {s„Sj), such that there is at 
least one minterm switching from zero to one, in going from 3,- to 3j, for all 
22r, such pairs. Let C(n) denote this number for the onsets of size n. We 
write the following recurrence equation for C. 

C(l) = l; C(n)  =  3C(n-l) + 22n-2; 

The term 2C(n - 1) occurs due to the internal contributions of two 
groups of n - 1 sized onsets. All the 2n_1 elements of the first group 
will have a 0 —> 1 transition when going to any of the 2n"1 second group 
elements, since the first column has 2n-1 zeros followed by 2n"1 ones. This 
gives the term 22,,"2. Another C(n - 1) factor comes along because of the 
interaction of the second *: jip with the first one. 

This recurrence has a solution in C(n) = 4n - 3". Thus the number 
of such pairs grows exponentially in n. The average fraction of 0 -> 1 
transitions is given by C(n)/22n, which equals 1 - (3/4)n. Thus, the 
average delay is dominated by the 0 -> 1 delay. The time it takes for the 
1 —> 0 transitions is the same in both the styles, since these transitions have 
the same strengths in both the design styles. 

D 

Note that in this delay model, the superiority of a dynamic design over 
a static design can be proved for any logic expression by showing that a 
majority of transitions are from zero to one. 
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